Matches in SemOpenAlex for { <https://semopenalex.org/work/W2144709821> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2144709821 endingPage "49" @default.
- W2144709821 startingPage "43" @default.
- W2144709821 abstract "Automatic speech segmentation as an important part of speech recognition system (ASR) is highly noise dependent. Noise is made by changes in the communication channel, background, level of speaking etc. In recent years, many researchers have proposed noise cancelation techniques and have added visual features from speaker's face to reduce the effect of noise on ASR systems. Removing noise from audio signals depends on the type of the noise; so it cannot be used as a general solution. Adding visual features improve this lack of efficiency, but advanced methods of this type need manual extraction of visual features. In this paper we propose a completely automatic system which uses optical flow vectors from speaker's image sequence to obtain visual features. Then, Hidden Markov Models are trained to segment audio signals from image sequences and audio features based on extracted optical flow. The developed segmentation system based on such method acts totally automatic and become more robust to noise." @default.
- W2144709821 created "2016-06-24" @default.
- W2144709821 creator A5011139211 @default.
- W2144709821 creator A5091029733 @default.
- W2144709821 date "2014-10-08" @default.
- W2144709821 modified "2023-09-28" @default.
- W2144709821 title "Automatic Speech Segmentation Based On Audio and Optical Flow Visual Classification" @default.
- W2144709821 cites W1524802957 @default.
- W2144709821 cites W1963513925 @default.
- W2144709821 cites W2000099289 @default.
- W2144709821 cites W2033160817 @default.
- W2144709821 cites W2043181877 @default.
- W2144709821 cites W2063871242 @default.
- W2144709821 cites W2064328587 @default.
- W2144709821 cites W2080921589 @default.
- W2144709821 cites W2095959744 @default.
- W2144709821 cites W2114746626 @default.
- W2144709821 cites W2116277445 @default.
- W2144709821 cites W2123736354 @default.
- W2144709821 cites W2126597753 @default.
- W2144709821 cites W2127799833 @default.
- W2144709821 cites W2130322773 @default.
- W2144709821 cites W2139106564 @default.
- W2144709821 cites W2145326008 @default.
- W2144709821 cites W2153723410 @default.
- W2144709821 cites W2154965823 @default.
- W2144709821 cites W2532926524 @default.
- W2144709821 cites W2751023760 @default.
- W2144709821 cites W636971608 @default.
- W2144709821 cites W88081813 @default.
- W2144709821 cites W1954355610 @default.
- W2144709821 doi "https://doi.org/10.5815/ijigsp.2014.11.06" @default.
- W2144709821 hasPublicationYear "2014" @default.
- W2144709821 type Work @default.
- W2144709821 sameAs 2144709821 @default.
- W2144709821 citedByCount "0" @default.
- W2144709821 crossrefType "journal-article" @default.
- W2144709821 hasAuthorship W2144709821A5011139211 @default.
- W2144709821 hasAuthorship W2144709821A5091029733 @default.
- W2144709821 hasBestOaLocation W21447098211 @default.
- W2144709821 hasConcept C100675267 @default.
- W2144709821 hasConcept C115961682 @default.
- W2144709821 hasConcept C153180895 @default.
- W2144709821 hasConcept C154945302 @default.
- W2144709821 hasConcept C155542232 @default.
- W2144709821 hasConcept C23224414 @default.
- W2144709821 hasConcept C28490314 @default.
- W2144709821 hasConcept C3017588708 @default.
- W2144709821 hasConcept C31972630 @default.
- W2144709821 hasConcept C41008148 @default.
- W2144709821 hasConcept C49774154 @default.
- W2144709821 hasConcept C76155785 @default.
- W2144709821 hasConcept C89600930 @default.
- W2144709821 hasConcept C99498987 @default.
- W2144709821 hasConceptScore W2144709821C100675267 @default.
- W2144709821 hasConceptScore W2144709821C115961682 @default.
- W2144709821 hasConceptScore W2144709821C153180895 @default.
- W2144709821 hasConceptScore W2144709821C154945302 @default.
- W2144709821 hasConceptScore W2144709821C155542232 @default.
- W2144709821 hasConceptScore W2144709821C23224414 @default.
- W2144709821 hasConceptScore W2144709821C28490314 @default.
- W2144709821 hasConceptScore W2144709821C3017588708 @default.
- W2144709821 hasConceptScore W2144709821C31972630 @default.
- W2144709821 hasConceptScore W2144709821C41008148 @default.
- W2144709821 hasConceptScore W2144709821C49774154 @default.
- W2144709821 hasConceptScore W2144709821C76155785 @default.
- W2144709821 hasConceptScore W2144709821C89600930 @default.
- W2144709821 hasConceptScore W2144709821C99498987 @default.
- W2144709821 hasIssue "11" @default.
- W2144709821 hasLocation W21447098211 @default.
- W2144709821 hasOpenAccess W2144709821 @default.
- W2144709821 hasPrimaryLocation W21447098211 @default.
- W2144709821 hasRelatedWork W111284038 @default.
- W2144709821 hasRelatedWork W1571194703 @default.
- W2144709821 hasRelatedWork W1984634380 @default.
- W2144709821 hasRelatedWork W2039679570 @default.
- W2144709821 hasRelatedWork W2092776130 @default.
- W2144709821 hasRelatedWork W2102149658 @default.
- W2144709821 hasRelatedWork W2112348857 @default.
- W2144709821 hasRelatedWork W2121486117 @default.
- W2144709821 hasRelatedWork W2139790115 @default.
- W2144709821 hasRelatedWork W2141769559 @default.
- W2144709821 hasRelatedWork W2142574745 @default.
- W2144709821 hasRelatedWork W2155289555 @default.
- W2144709821 hasRelatedWork W25278857 @default.
- W2144709821 hasRelatedWork W2539919382 @default.
- W2144709821 hasRelatedWork W2577762507 @default.
- W2144709821 hasRelatedWork W2752520680 @default.
- W2144709821 hasRelatedWork W2793122029 @default.
- W2144709821 hasRelatedWork W306210010 @default.
- W2144709821 hasRelatedWork W629242906 @default.
- W2144709821 hasRelatedWork W2572763611 @default.
- W2144709821 hasVolume "6" @default.
- W2144709821 isParatext "false" @default.
- W2144709821 isRetracted "false" @default.
- W2144709821 magId "2144709821" @default.
- W2144709821 workType "article" @default.