Matches in SemOpenAlex for { <https://semopenalex.org/work/W2144842919> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2144842919 abstract "Optimal component analysis (OCA) provides a general sub-space formulation that has many applications. Within the framework of linear representations, OCA poses the problem of finding the optimal representations as an optimization one on the underlying manifold such as Grassmann and a stochastic optimization algorithm can then be used to derive optimal representations for recognition and other applications. However, in many applications, as the underlying manifold is intrinsically nonlinear, the effectiveness of linear representations and thus OCA can be limited. To overcome this fundamental limitation, in this paper we propose a kernelized version of optimal component analysis. The basic idea is to (potentially) account the nonlinearity in the feature space through a nonlinear feature mapping so that linear representations in the resulting feature space can be used effectively for nonlinear problems in the given space. The computational complexity associated with the mapping is overcome by performing the mapping implicitly using a property of reproducing kernel Hilbert space. Therefore, kernel optimal component analysis provides a general method to learn application-dependent representations, either linear or nonlinear and a stochastic effective algorithm is presented. Experimental results for recognition show the feasibility and effectiveness of the proposed method." @default.
- W2144842919 created "2016-06-24" @default.
- W2144842919 creator A5025749256 @default.
- W2144842919 creator A5039837606 @default.
- W2144842919 date "2005-04-01" @default.
- W2144842919 modified "2023-09-26" @default.
- W2144842919 title "Kernel Optimal Component Analysis" @default.
- W2144842919 cites W2026892575 @default.
- W2144842919 cites W2041657594 @default.
- W2144842919 cites W2087347434 @default.
- W2144842919 cites W2121647436 @default.
- W2144842919 cites W2124101779 @default.
- W2144842919 cites W2138451337 @default.
- W2144842919 cites W2139896607 @default.
- W2144842919 cites W2140095548 @default.
- W2144842919 cites W2144451942 @default.
- W2144842919 cites W2156909104 @default.
- W2144842919 cites W2158162781 @default.
- W2144842919 cites W2168777491 @default.
- W2144842919 doi "https://doi.org/10.1109/cvpr.2004.377" @default.
- W2144842919 hasPublicationYear "2005" @default.
- W2144842919 type Work @default.
- W2144842919 sameAs 2144842919 @default.
- W2144842919 citedByCount "5" @default.
- W2144842919 crossrefType "proceedings-article" @default.
- W2144842919 hasAuthorship W2144842919A5025749256 @default.
- W2144842919 hasAuthorship W2144842919A5039837606 @default.
- W2144842919 hasConcept C11413529 @default.
- W2144842919 hasConcept C114614502 @default.
- W2144842919 hasConcept C121332964 @default.
- W2144842919 hasConcept C122280245 @default.
- W2144842919 hasConcept C12267149 @default.
- W2144842919 hasConcept C126255220 @default.
- W2144842919 hasConcept C134306372 @default.
- W2144842919 hasConcept C138885662 @default.
- W2144842919 hasConcept C154945302 @default.
- W2144842919 hasConcept C158622935 @default.
- W2144842919 hasConcept C168167062 @default.
- W2144842919 hasConcept C182335926 @default.
- W2144842919 hasConcept C2776401178 @default.
- W2144842919 hasConcept C2780692498 @default.
- W2144842919 hasConcept C33923547 @default.
- W2144842919 hasConcept C41008148 @default.
- W2144842919 hasConcept C41895202 @default.
- W2144842919 hasConcept C62520636 @default.
- W2144842919 hasConcept C62799726 @default.
- W2144842919 hasConcept C74193536 @default.
- W2144842919 hasConcept C80884492 @default.
- W2144842919 hasConcept C83665646 @default.
- W2144842919 hasConcept C97355855 @default.
- W2144842919 hasConceptScore W2144842919C11413529 @default.
- W2144842919 hasConceptScore W2144842919C114614502 @default.
- W2144842919 hasConceptScore W2144842919C121332964 @default.
- W2144842919 hasConceptScore W2144842919C122280245 @default.
- W2144842919 hasConceptScore W2144842919C12267149 @default.
- W2144842919 hasConceptScore W2144842919C126255220 @default.
- W2144842919 hasConceptScore W2144842919C134306372 @default.
- W2144842919 hasConceptScore W2144842919C138885662 @default.
- W2144842919 hasConceptScore W2144842919C154945302 @default.
- W2144842919 hasConceptScore W2144842919C158622935 @default.
- W2144842919 hasConceptScore W2144842919C168167062 @default.
- W2144842919 hasConceptScore W2144842919C182335926 @default.
- W2144842919 hasConceptScore W2144842919C2776401178 @default.
- W2144842919 hasConceptScore W2144842919C2780692498 @default.
- W2144842919 hasConceptScore W2144842919C33923547 @default.
- W2144842919 hasConceptScore W2144842919C41008148 @default.
- W2144842919 hasConceptScore W2144842919C41895202 @default.
- W2144842919 hasConceptScore W2144842919C62520636 @default.
- W2144842919 hasConceptScore W2144842919C62799726 @default.
- W2144842919 hasConceptScore W2144842919C74193536 @default.
- W2144842919 hasConceptScore W2144842919C80884492 @default.
- W2144842919 hasConceptScore W2144842919C83665646 @default.
- W2144842919 hasConceptScore W2144842919C97355855 @default.
- W2144842919 hasLocation W21448429191 @default.
- W2144842919 hasOpenAccess W2144842919 @default.
- W2144842919 hasPrimaryLocation W21448429191 @default.
- W2144842919 hasRelatedWork W1505907345 @default.
- W2144842919 hasRelatedWork W1975708617 @default.
- W2144842919 hasRelatedWork W2056283567 @default.
- W2144842919 hasRelatedWork W2081743126 @default.
- W2144842919 hasRelatedWork W2144842919 @default.
- W2144842919 hasRelatedWork W2534878021 @default.
- W2144842919 hasRelatedWork W2586549970 @default.
- W2144842919 hasRelatedWork W2964184113 @default.
- W2144842919 hasRelatedWork W3006757452 @default.
- W2144842919 hasRelatedWork W4298112926 @default.
- W2144842919 isParatext "false" @default.
- W2144842919 isRetracted "false" @default.
- W2144842919 magId "2144842919" @default.
- W2144842919 workType "article" @default.