Matches in SemOpenAlex for { <https://semopenalex.org/work/W2144906176> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2144906176 endingPage "122" @default.
- W2144906176 startingPage "112" @default.
- W2144906176 abstract "AboutSectionsView PDF ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinked InEmail Go to Section HomeInterfacesVol. 31, No. 4 An Analysis of the Applications of Neural Networks in FinanceAdam Fadlalla, Chien-Hua LinAdam Fadlalla, Chien-Hua LinPublished Online:1 Aug 2001https://doi.org/10.1287/inte.31.4.112.9662AbstractOver the last 10 years, neural networks have been increasingly applied to various areas of finance. Neural networks are more often applied on the assets side than on the liabilities side of the balance sheet. Some major characteristics of the areas of these applications are their data intensity, unstructured nature, high degree of uncertainty, and hidden relationships. Most of the applications use the backpropagation model with one hidden layer. In most of these applications, neural networks out-performed traditional statistical models, such as discriminant and regression analysis. Furthermore, these applications have shown significant success in financial practice, for example, in forecasting T-bills, in asset management, in portfolio selection, and in fraud detection. Previous Back to Top Next FiguresReferencesRelatedInformationCited byFinancial applications of machine learning: A literature reviewExpert Systems with Applications, Vol. 219A Hybrid Neural Network Model Based on Convolutional Cascade Neural Networks: An Application for Image Inspection in Production17 January 2023Valuation of the Extension Option in Time Charter Contracts in the LNG Market15 September 2022 | Energies, Vol. 15, No. 18Application of Artificial Neural Network and Multiple Linear Regression in Predicting Consumer Attitude Towards Use of Mobile Wallet4 July 2022A comprehensive survey on deep neural networks for stock market: The need, challenges, and future directionsExpert Systems with Applications, Vol. 177Comparative Analysis of Recurrent Neural Networks in Stock Price Prediction for Different Frequency Domains22 August 2021 | Algorithms, Vol. 14, No. 8Validity of Machine Learning in the Quantitative Analysis of Complex Scanning Near-Field Optical Microscopy Signals Using Simulated Data4 January 2021 | Physical Review Applied, Vol. 15, No. 1The role of AI in capital structure to enhance corporate funding strategiesArray, Vol. 6A Comparative Study of Multiple Regression Analysis and Back Propagation Neural Network Approaches on Predicting Financial Strength of Banks: An Indian Perspective16 June 2020 | WSEAS TRANSACTIONS ON BUSINESS AND ECONOMICS, Vol. 17Genetic and deep learning clusters based on neural networks for management decision structures20 May 2019 | Neural Computing and Applications, Vol. 32, No. 9Survival and Neural Models for Private Equity Exit PredictionIFAC-PapersOnLine, Vol. 53, No. 2Analysis of Financial Time Series in Frequency Domain Using Neural Networks4 December 2019Wood resource management using an endocrine NARX neural network21 July 2017 | European Journal of Wood and Wood Products, Vol. 76, No. 2Stocks14 December 2018The Random Neural Network with a Genetic Algorithm and Deep Learning Clusters in Fintech: Smart Investment22 May 2018Web-Based Behavioral Modeling for Continuous User Authentication (CUA)The Integration of Artificial Neural Networks and Text Mining to Forecast Gold Futures Prices17 January 2014 | Communications in Statistics - Simulation and Computation, Vol. 45, No. 4A knowledge based scheme for risk assessment in loan processing by banksDecision Support Systems, Vol. 84PREDICTING NEXT TRADING DAY CLOSING PRICE OF QATAR EXCHANGE INDEX USING TECHNICAL INDICATORS AND ARTIFICIAL NEURAL NETWORKS2 August 2014 | Intelligent Systems in Accounting, Finance and Management, Vol. 21, No. 4Relación entre la creación de valor y la inversión en I+D: una aproximación mediante redes neuronales artificiales1 January 2014 | Innovar, Vol. 24, No. 51The Future of Correlation Modeling13 December 2013Neural Networks for Time-Series ForecastingA New Approach in Financial Modelling with the Aid of Artificial Neural Networks1 August 2011 | Journal of Algorithms & Computational Technology, Vol. 5, No. 3The three-factor model and artificial neural networks: predicting stock price movement in China27 August 2009 | Annals of Operations Research, Vol. 185, No. 1Applications of Artificial Neural Networks in Financial Economics: A SurveyStatistical Methods for Fighting Financial CrimesTechnometrics, Vol. 52, No. 1Invited Paper: Profiling Intelligent Systems Applications in Fraud Detection and Prevention: Survey of Research ArticlesA study of financial insolvency prediction model for life insurersExpert Systems with Applications, Vol. 36, No. 3The Predictive Role of Symptoms/signs on ACR20 Responses in Rheumatoid Arthritis Analyzed with Data Mining ApproachesArtificial Intelligence Systems Applied to Accounting, Auditing and FinanceSSRN Electronic JournalOptimal algorithms and intuitive explanations for Markowitz’s portfolio selection model and Sharpe’s ratio with no short-selling4 October 2008 | Science in China Series A: Mathematics, Vol. 51, No. 11DETERMINANTS OF COMMERCIAL MORTGAGE‐BACKED SECURITIES CREDIT RATINGS: AUSTRALIAN EVIDENCEInternational Journal of Strategic Property Management, Vol. 12, No. 2The equity premium puzzle: an artificial neural network approachReview of Accounting and Finance, Vol. 6, No. 2Toward Automated Intelligent Manufacturing Systems (AIMS)Hoi-Ming Chi, Okan K. Ersoy, Herbert Moskowitz, Kemal Altinkemer, 1 May 2007 | INFORMS Journal on Computing, Vol. 19, No. 2NEURAL NETWORKS IN FINANCE AND ECONOMICS FORECASTING20 November 2011 | International Journal of Information Technology & Decision Making, Vol. 06, No. 01Stock Rate Prediction Using Backpropagation Algorithm: Results with Different Number of Hidden LayersJournal of Software Engineering, Vol. 1, No. 1Predicting and explaining patronage behavior toward web and traditional stores using neural networks: a comparative analysis with logistic regressionDecision Support Systems, Vol. 41, No. 2Forecasting Stock Index Movement: A Comparison of Support Vector Machines and Random ForestSSRN Electronic JournalA comparison between Fama and French's model and artificial neural networks in predicting the Chinese stock marketComputers & Operations Research, Vol. 32, No. 10Neural Network Forecasting of Tourism Demand15 September 2016 | Tourism Economics, Vol. 11, No. 3Analysing Customer Satisfaction Data: A Comparison of Regression and Artificial Neural Networks30 January 2018 | International Journal of Market Research, Vol. 47, No. 2 Volume 31, Issue 4July-August 2001Pages 1-137 Article Information Metrics Information Published Online:August 01, 2001 © 2001 INFORMSCite asAdam Fadlalla, Chien-Hua Lin, (2001) An Analysis of the Applications of Neural Networks in Finance. Interfaces 31(4):112-122. https://doi.org/10.1287/inte.31.4.112.9662 KeywordsDECISION ANALYSIS—APPLICATIONSFINANCE—APPLICATIONSNEURAL NETWORKSPDF download" @default.
- W2144906176 created "2016-06-24" @default.
- W2144906176 creator A5034166429 @default.
- W2144906176 creator A5076433839 @default.
- W2144906176 date "2001-07-01" @default.
- W2144906176 modified "2023-09-27" @default.
- W2144906176 title "An Analysis of the Applications of Neural Networks in Finance" @default.
- W2144906176 cites W1510569944 @default.
- W2144906176 cites W1968182870 @default.
- W2144906176 cites W1983220355 @default.
- W2144906176 cites W1995945562 @default.
- W2144906176 cites W2004983867 @default.
- W2144906176 cites W2005598952 @default.
- W2144906176 cites W2012603310 @default.
- W2144906176 cites W2016207894 @default.
- W2144906176 cites W2033594054 @default.
- W2144906176 cites W2047649690 @default.
- W2144906176 cites W2064031858 @default.
- W2144906176 cites W2073057438 @default.
- W2144906176 cites W2097847779 @default.
- W2144906176 cites W2101927907 @default.
- W2144906176 cites W2110181305 @default.
- W2144906176 cites W2110651528 @default.
- W2144906176 cites W2119777970 @default.
- W2144906176 cites W2120224355 @default.
- W2144906176 cites W2138621668 @default.
- W2144906176 cites W2148729845 @default.
- W2144906176 cites W2150182072 @default.
- W2144906176 cites W2162240164 @default.
- W2144906176 cites W2165035706 @default.
- W2144906176 cites W2278183208 @default.
- W2144906176 cites W46981156 @default.
- W2144906176 cites W643884078 @default.
- W2144906176 doi "https://doi.org/10.1287/inte.31.5.112.9662" @default.
- W2144906176 hasPublicationYear "2001" @default.
- W2144906176 type Work @default.
- W2144906176 sameAs 2144906176 @default.
- W2144906176 citedByCount "50" @default.
- W2144906176 countsByYear W21449061762013 @default.
- W2144906176 countsByYear W21449061762014 @default.
- W2144906176 countsByYear W21449061762015 @default.
- W2144906176 countsByYear W21449061762016 @default.
- W2144906176 countsByYear W21449061762018 @default.
- W2144906176 countsByYear W21449061762019 @default.
- W2144906176 countsByYear W21449061762022 @default.
- W2144906176 crossrefType "journal-article" @default.
- W2144906176 hasAuthorship W2144906176A5034166429 @default.
- W2144906176 hasAuthorship W2144906176A5076433839 @default.
- W2144906176 hasConcept C108583219 @default.
- W2144906176 hasConcept C119857082 @default.
- W2144906176 hasConcept C154945302 @default.
- W2144906176 hasConcept C155032097 @default.
- W2144906176 hasConcept C41008148 @default.
- W2144906176 hasConcept C50644808 @default.
- W2144906176 hasConcept C69738355 @default.
- W2144906176 hasConcept C81363708 @default.
- W2144906176 hasConceptScore W2144906176C108583219 @default.
- W2144906176 hasConceptScore W2144906176C119857082 @default.
- W2144906176 hasConceptScore W2144906176C154945302 @default.
- W2144906176 hasConceptScore W2144906176C155032097 @default.
- W2144906176 hasConceptScore W2144906176C41008148 @default.
- W2144906176 hasConceptScore W2144906176C50644808 @default.
- W2144906176 hasConceptScore W2144906176C69738355 @default.
- W2144906176 hasConceptScore W2144906176C81363708 @default.
- W2144906176 hasIssue "4" @default.
- W2144906176 hasLocation W21449061761 @default.
- W2144906176 hasOpenAccess W2144906176 @default.
- W2144906176 hasPrimaryLocation W21449061761 @default.
- W2144906176 hasRelatedWork W2337926734 @default.
- W2144906176 hasRelatedWork W2799614062 @default.
- W2144906176 hasRelatedWork W2883041339 @default.
- W2144906176 hasRelatedWork W2963958939 @default.
- W2144906176 hasRelatedWork W3173182854 @default.
- W2144906176 hasRelatedWork W3181335979 @default.
- W2144906176 hasRelatedWork W4311257506 @default.
- W2144906176 hasRelatedWork W4319994054 @default.
- W2144906176 hasRelatedWork W4320802194 @default.
- W2144906176 hasRelatedWork W4327499916 @default.
- W2144906176 hasVolume "31" @default.
- W2144906176 isParatext "false" @default.
- W2144906176 isRetracted "false" @default.
- W2144906176 magId "2144906176" @default.
- W2144906176 workType "article" @default.