Matches in SemOpenAlex for { <https://semopenalex.org/work/W2144927376> ?p ?o ?g. }
- W2144927376 endingPage "147" @default.
- W2144927376 startingPage "134" @default.
- W2144927376 abstract "Bone is a biomaterial undergoing continuous renewal. The renewal process is known as bone remodelling and is operated by bone-resorbing cells (osteoclasts) and bone-forming cells (osteoblasts). An important function of bone remodelling is the repair of microcracks accumulating in the bone matrix due to mechanical loading. Cell–cell communication between cells of the osteoclastic lineage and cells of the osteoblastic lineage is thought to couple resorption and formation so as to preserve bone integrity and achieve homeostatic bone renewal. Both biochemical and biomechanical regulatory mechanisms have been identified in this coupling. Many bone pathologies are associated with an alteration of bone cell interactions and a consequent disruption of bone homeostasis. In osteoporosis, for example, this disruption leads to long-term bone loss and increased fragility, and can ultimately result in fractures. Here we focus on an additional and poorly understood potential regulatory mechanism of bone cells, that involves the morphology of the microstructure of bone. Bone cells can only remove and replace bone at a bone surface. However, the microscopic availability of bone surface depends in turn on the ever-changing bone microstructure. The importance of this geometrical dependence is unknown and difficult to quantify experimentally. Therefore, we develop a sophisticated mathematical model of bone cell interactions that takes into account biochemical, biomechanical and geometrical regulations. We then investigate numerically the influence of bone surface availability in bone remodelling within a representative bone tissue sample. Biochemical regulations included in the model involve signalling molecules of the receptor–activator nuclear factor κB pathway (rank–rankl–opg), macrophage colony-stimulating factor (mcsf), transforming growth factor β(tgfβ), and parathyroid hormone (pth). For the biomechanical regulation of bone cells, a multiscale homogenisation scheme is used to determine the microscopic strains generated at the level of the extravascular matrix hosting the osteocytes by macroscopic loading. The interdependence between the bone cells’ activity, which modifies the bone microstructure, and changes in the microscopic bone surface availability, which in turn influences bone cell development and activity, is implemented using a remarkable experimental relationship between bone specific surface and bone porosity. Our model suggests that geometrical regulation of the activation of new remodelling events could have a significant effect on bone porosity and bone stiffness in osteoporosis. On the other hand, geometrical regulation of late stages of osteoblast and osteoclast differentiation seems less significant. We conclude that the development of osteoporosis is probably accelerated by this geometrical regulation in cortical bone, but probably slowed down in trabecular bone." @default.
- W2144927376 created "2016-06-24" @default.
- W2144927376 creator A5001867769 @default.
- W2144927376 creator A5024297030 @default.
- W2144927376 creator A5035528563 @default.
- W2144927376 creator A5063647356 @default.
- W2144927376 creator A5069198169 @default.
- W2144927376 date "2013-02-01" @default.
- W2144927376 modified "2023-10-16" @default.
- W2144927376 title "The influence of bone surface availability in bone remodelling—A mathematical model including coupled geometrical and biomechanical regulations of bone cells" @default.
- W2144927376 cites W1516104778 @default.
- W2144927376 cites W1965677499 @default.
- W2144927376 cites W1967780379 @default.
- W2144927376 cites W1973531794 @default.
- W2144927376 cites W1977315156 @default.
- W2144927376 cites W1979462438 @default.
- W2144927376 cites W1982213084 @default.
- W2144927376 cites W1990838989 @default.
- W2144927376 cites W1992156727 @default.
- W2144927376 cites W1995810411 @default.
- W2144927376 cites W1998231486 @default.
- W2144927376 cites W2003843696 @default.
- W2144927376 cites W2011828467 @default.
- W2144927376 cites W2013800214 @default.
- W2144927376 cites W2015189035 @default.
- W2144927376 cites W2016308888 @default.
- W2144927376 cites W2024916097 @default.
- W2144927376 cites W2025456497 @default.
- W2144927376 cites W2034627832 @default.
- W2144927376 cites W2035303539 @default.
- W2144927376 cites W2037606489 @default.
- W2144927376 cites W2039457840 @default.
- W2144927376 cites W2045561758 @default.
- W2144927376 cites W2046354206 @default.
- W2144927376 cites W2055206706 @default.
- W2144927376 cites W2056810908 @default.
- W2144927376 cites W2057000035 @default.
- W2144927376 cites W2060363283 @default.
- W2144927376 cites W2066342271 @default.
- W2144927376 cites W2072954894 @default.
- W2144927376 cites W2078156116 @default.
- W2144927376 cites W2081877806 @default.
- W2144927376 cites W2084546241 @default.
- W2144927376 cites W2087549211 @default.
- W2144927376 cites W2087733742 @default.
- W2144927376 cites W2092501887 @default.
- W2144927376 cites W2101330516 @default.
- W2144927376 cites W2104904898 @default.
- W2144927376 cites W2117309459 @default.
- W2144927376 cites W2130934825 @default.
- W2144927376 cites W2132961114 @default.
- W2144927376 cites W2139347911 @default.
- W2144927376 cites W2145026015 @default.
- W2144927376 cites W2148851290 @default.
- W2144927376 cites W2159775719 @default.
- W2144927376 cites W2168376037 @default.
- W2144927376 cites W2570239561 @default.
- W2144927376 cites W2736826684 @default.
- W2144927376 cites W4255217118 @default.
- W2144927376 doi "https://doi.org/10.1016/j.engstruct.2012.09.006" @default.
- W2144927376 hasPublicationYear "2013" @default.
- W2144927376 type Work @default.
- W2144927376 sameAs 2144927376 @default.
- W2144927376 citedByCount "62" @default.
- W2144927376 countsByYear W21449273762013 @default.
- W2144927376 countsByYear W21449273762014 @default.
- W2144927376 countsByYear W21449273762015 @default.
- W2144927376 countsByYear W21449273762016 @default.
- W2144927376 countsByYear W21449273762017 @default.
- W2144927376 countsByYear W21449273762018 @default.
- W2144927376 countsByYear W21449273762019 @default.
- W2144927376 countsByYear W21449273762020 @default.
- W2144927376 countsByYear W21449273762021 @default.
- W2144927376 countsByYear W21449273762022 @default.
- W2144927376 countsByYear W21449273762023 @default.
- W2144927376 crossrefType "journal-article" @default.
- W2144927376 hasAuthorship W2144927376A5001867769 @default.
- W2144927376 hasAuthorship W2144927376A5024297030 @default.
- W2144927376 hasAuthorship W2144927376A5035528563 @default.
- W2144927376 hasAuthorship W2144927376A5063647356 @default.
- W2144927376 hasAuthorship W2144927376A5069198169 @default.
- W2144927376 hasBestOaLocation W21449273762 @default.
- W2144927376 hasConcept C105702510 @default.
- W2144927376 hasConcept C12021080 @default.
- W2144927376 hasConcept C133605539 @default.
- W2144927376 hasConcept C134018914 @default.
- W2144927376 hasConcept C170033053 @default.
- W2144927376 hasConcept C170493617 @default.
- W2144927376 hasConcept C185592680 @default.
- W2144927376 hasConcept C2776033226 @default.
- W2144927376 hasConcept C2776541429 @default.
- W2144927376 hasConcept C2778606738 @default.
- W2144927376 hasConcept C2779428903 @default.
- W2144927376 hasConcept C55493867 @default.
- W2144927376 hasConcept C673006 @default.
- W2144927376 hasConcept C8337478 @default.
- W2144927376 hasConcept C86803240 @default.
- W2144927376 hasConcept C88045685 @default.