Matches in SemOpenAlex for { <https://semopenalex.org/work/W2145020281> ?p ?o ?g. }
- W2145020281 endingPage "166" @default.
- W2145020281 startingPage "156" @default.
- W2145020281 abstract "Decision-theoretic rough set model can derive several probabilistic rough set models by providing proper cost functions. Learning cost functions from data automatically is the key to improving the applicability of decision-theoretic rough set model. Many region-related attribute reductions are not appropriate for probabilistic rough set models as the monotonic property of regions does not always hold. In this paper, we propose an optimization representation of decision-theoretic rough set model. An optimization problem is proposed by considering the minimization of the decision cost. Two significant inferences can be drawn from the solution of the optimization problem. Firstly, cost functions and thresholds used in decision-theoretic rough set model can be learned from the given data automatically. An adaptive learning algorithm and a genetic algorithm are designed. Secondly, a minimum cost attribute reduction can be defined. The attribute reduction is interpreted as finding the minimal attribute set to make the decision cost minimum. A heuristic approach and a particle swarm optimization approach are also proposed. The optimization representation can bring some new insights into the research on decision-theoretic rough set model." @default.
- W2145020281 created "2016-06-24" @default.
- W2145020281 creator A5005181031 @default.
- W2145020281 creator A5063402368 @default.
- W2145020281 creator A5072069474 @default.
- W2145020281 creator A5080775608 @default.
- W2145020281 date "2014-01-01" @default.
- W2145020281 modified "2023-09-27" @default.
- W2145020281 title "On an optimization representation of decision-theoretic rough set model" @default.
- W2145020281 cites W101345952 @default.
- W2145020281 cites W135863482 @default.
- W2145020281 cites W1483373027 @default.
- W2145020281 cites W1511669739 @default.
- W2145020281 cites W1537207111 @default.
- W2145020281 cites W1543423052 @default.
- W2145020281 cites W1543832863 @default.
- W2145020281 cites W1593694652 @default.
- W2145020281 cites W175774416 @default.
- W2145020281 cites W1787812828 @default.
- W2145020281 cites W1963626514 @default.
- W2145020281 cites W1969463949 @default.
- W2145020281 cites W1980861610 @default.
- W2145020281 cites W1986537524 @default.
- W2145020281 cites W1994743372 @default.
- W2145020281 cites W1997362234 @default.
- W2145020281 cites W2001692054 @default.
- W2145020281 cites W2007929615 @default.
- W2145020281 cites W2009653394 @default.
- W2145020281 cites W2036026932 @default.
- W2145020281 cites W2037053120 @default.
- W2145020281 cites W2037316073 @default.
- W2145020281 cites W2040420455 @default.
- W2145020281 cites W2045358009 @default.
- W2145020281 cites W2049204733 @default.
- W2145020281 cites W2053623704 @default.
- W2145020281 cites W2060945930 @default.
- W2145020281 cites W2070542280 @default.
- W2145020281 cites W2070813883 @default.
- W2145020281 cites W2077183117 @default.
- W2145020281 cites W2089923511 @default.
- W2145020281 cites W2097287674 @default.
- W2145020281 cites W2114074159 @default.
- W2145020281 cites W2122937613 @default.
- W2145020281 cites W2142246791 @default.
- W2145020281 cites W2145716889 @default.
- W2145020281 cites W2159875572 @default.
- W2145020281 cites W2160396543 @default.
- W2145020281 cites W2162089666 @default.
- W2145020281 cites W2162755671 @default.
- W2145020281 cites W2168523997 @default.
- W2145020281 cites W2751237624 @default.
- W2145020281 cites W3026422700 @default.
- W2145020281 cites W4230741605 @default.
- W2145020281 cites W4238381552 @default.
- W2145020281 doi "https://doi.org/10.1016/j.ijar.2013.02.010" @default.
- W2145020281 hasPublicationYear "2014" @default.
- W2145020281 type Work @default.
- W2145020281 sameAs 2145020281 @default.
- W2145020281 citedByCount "122" @default.
- W2145020281 countsByYear W21450202812013 @default.
- W2145020281 countsByYear W21450202812014 @default.
- W2145020281 countsByYear W21450202812015 @default.
- W2145020281 countsByYear W21450202812016 @default.
- W2145020281 countsByYear W21450202812017 @default.
- W2145020281 countsByYear W21450202812018 @default.
- W2145020281 countsByYear W21450202812019 @default.
- W2145020281 countsByYear W21450202812020 @default.
- W2145020281 countsByYear W21450202812021 @default.
- W2145020281 countsByYear W21450202812022 @default.
- W2145020281 countsByYear W21450202812023 @default.
- W2145020281 crossrefType "journal-article" @default.
- W2145020281 hasAuthorship W2145020281A5005181031 @default.
- W2145020281 hasAuthorship W2145020281A5063402368 @default.
- W2145020281 hasAuthorship W2145020281A5072069474 @default.
- W2145020281 hasAuthorship W2145020281A5080775608 @default.
- W2145020281 hasBestOaLocation W21450202811 @default.
- W2145020281 hasConcept C111012933 @default.
- W2145020281 hasConcept C111335779 @default.
- W2145020281 hasConcept C124101348 @default.
- W2145020281 hasConcept C126255220 @default.
- W2145020281 hasConcept C154945302 @default.
- W2145020281 hasConcept C173801870 @default.
- W2145020281 hasConcept C177264268 @default.
- W2145020281 hasConcept C17744445 @default.
- W2145020281 hasConcept C199360897 @default.
- W2145020281 hasConcept C199539241 @default.
- W2145020281 hasConcept C2524010 @default.
- W2145020281 hasConcept C2776359362 @default.
- W2145020281 hasConcept C33923547 @default.
- W2145020281 hasConcept C39105242 @default.
- W2145020281 hasConcept C41008148 @default.
- W2145020281 hasConcept C49937458 @default.
- W2145020281 hasConcept C84839998 @default.
- W2145020281 hasConcept C94625758 @default.
- W2145020281 hasConceptScore W2145020281C111012933 @default.
- W2145020281 hasConceptScore W2145020281C111335779 @default.
- W2145020281 hasConceptScore W2145020281C124101348 @default.
- W2145020281 hasConceptScore W2145020281C126255220 @default.