Matches in SemOpenAlex for { <https://semopenalex.org/work/W2145303193> ?p ?o ?g. }
- W2145303193 endingPage "267" @default.
- W2145303193 startingPage "251" @default.
- W2145303193 abstract "Canonical correlation analysis (CCA) is a widely used statistical technique to capture correlations between two sets of multi-variate random variables and has found a multitude of applications in computer vision, medical imaging and machine learning. The classical formulation assumes that the data live in a pair of vector spaces which makes its use in certain important scientific domains problematic. For instance, the set of symmetric positive definite matrices (SPD), rotations and probability distributions, all belong to certain curved Riemannian manifolds where vector-space operations are in general not applicable. Analyzing the space of such data via the classical versions of inference models is rather sub-optimal. But perhaps more importantly, since the algorithms do not respect the underlying geometry of the data space, it is hard to provide statistical guarantees (if any) on the results. Using the space of SPD matrices as a concrete example, this paper gives a principled generalization of the well known CCA to the Riemannian setting. Our CCA algorithm operates on the product Riemannian manifold representing SPD matrix-valued fields to identify meaningful statistical relationships on the product Riemannian manifold. As a proof of principle, we present results on an Alzheimer's disease (AD) study where the analysis task involves identifying correlations across diffusion tensor images (DTI) and Cauchy deformation tensor fields derived from T1-weighted magnetic resonance (MR) images." @default.
- W2145303193 created "2016-06-24" @default.
- W2145303193 creator A5011613330 @default.
- W2145303193 creator A5016378470 @default.
- W2145303193 creator A5023997184 @default.
- W2145303193 creator A5084579251 @default.
- W2145303193 creator A5084814930 @default.
- W2145303193 creator A5088095690 @default.
- W2145303193 date "2014-01-01" @default.
- W2145303193 modified "2023-10-10" @default.
- W2145303193 title "Canonical Correlation Analysis on Riemannian Manifolds and Its Applications" @default.
- W2145303193 cites W1504603474 @default.
- W2145303193 cites W1835013956 @default.
- W2145303193 cites W1926279062 @default.
- W2145303193 cites W1973637437 @default.
- W2145303193 cites W1979793730 @default.
- W2145303193 cites W1981664955 @default.
- W2145303193 cites W1982361270 @default.
- W2145303193 cites W2015497428 @default.
- W2145303193 cites W2032236594 @default.
- W2145303193 cites W2049252044 @default.
- W2145303193 cites W2052079413 @default.
- W2145303193 cites W2055513867 @default.
- W2145303193 cites W2098290597 @default.
- W2145303193 cites W2100235303 @default.
- W2145303193 cites W2105866209 @default.
- W2145303193 cites W2109409043 @default.
- W2145303193 cites W2117145236 @default.
- W2145303193 cites W2122319321 @default.
- W2145303193 cites W2125949583 @default.
- W2145303193 cites W2137072914 @default.
- W2145303193 cites W2143090565 @default.
- W2145303193 cites W2149652297 @default.
- W2145303193 cites W2152914237 @default.
- W2145303193 cites W2166403493 @default.
- W2145303193 cites W2167164761 @default.
- W2145303193 cites W2175834125 @default.
- W2145303193 cites W4206033904 @default.
- W2145303193 cites W4236743846 @default.
- W2145303193 cites W4237723258 @default.
- W2145303193 doi "https://doi.org/10.1007/978-3-319-10605-2_17" @default.
- W2145303193 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4194269" @default.
- W2145303193 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25317426" @default.
- W2145303193 hasPublicationYear "2014" @default.
- W2145303193 type Work @default.
- W2145303193 sameAs 2145303193 @default.
- W2145303193 citedByCount "17" @default.
- W2145303193 countsByYear W21453031932015 @default.
- W2145303193 countsByYear W21453031932016 @default.
- W2145303193 countsByYear W21453031932017 @default.
- W2145303193 countsByYear W21453031932018 @default.
- W2145303193 countsByYear W21453031932019 @default.
- W2145303193 countsByYear W21453031932020 @default.
- W2145303193 countsByYear W21453031932021 @default.
- W2145303193 countsByYear W21453031932022 @default.
- W2145303193 crossrefType "book-chapter" @default.
- W2145303193 hasAuthorship W2145303193A5011613330 @default.
- W2145303193 hasAuthorship W2145303193A5016378470 @default.
- W2145303193 hasAuthorship W2145303193A5023997184 @default.
- W2145303193 hasAuthorship W2145303193A5084579251 @default.
- W2145303193 hasAuthorship W2145303193A5084814930 @default.
- W2145303193 hasAuthorship W2145303193A5088095690 @default.
- W2145303193 hasBestOaLocation W21453031931 @default.
- W2145303193 hasConcept C105795698 @default.
- W2145303193 hasConcept C109546454 @default.
- W2145303193 hasConcept C12520029 @default.
- W2145303193 hasConcept C127413603 @default.
- W2145303193 hasConcept C13336665 @default.
- W2145303193 hasConcept C134306372 @default.
- W2145303193 hasConcept C153874254 @default.
- W2145303193 hasConcept C169391604 @default.
- W2145303193 hasConcept C177148314 @default.
- W2145303193 hasConcept C181104567 @default.
- W2145303193 hasConcept C195065555 @default.
- W2145303193 hasConcept C202444582 @default.
- W2145303193 hasConcept C2524010 @default.
- W2145303193 hasConcept C2779593128 @default.
- W2145303193 hasConcept C33923547 @default.
- W2145303193 hasConcept C529865628 @default.
- W2145303193 hasConcept C78519656 @default.
- W2145303193 hasConceptScore W2145303193C105795698 @default.
- W2145303193 hasConceptScore W2145303193C109546454 @default.
- W2145303193 hasConceptScore W2145303193C12520029 @default.
- W2145303193 hasConceptScore W2145303193C127413603 @default.
- W2145303193 hasConceptScore W2145303193C13336665 @default.
- W2145303193 hasConceptScore W2145303193C134306372 @default.
- W2145303193 hasConceptScore W2145303193C153874254 @default.
- W2145303193 hasConceptScore W2145303193C169391604 @default.
- W2145303193 hasConceptScore W2145303193C177148314 @default.
- W2145303193 hasConceptScore W2145303193C181104567 @default.
- W2145303193 hasConceptScore W2145303193C195065555 @default.
- W2145303193 hasConceptScore W2145303193C202444582 @default.
- W2145303193 hasConceptScore W2145303193C2524010 @default.
- W2145303193 hasConceptScore W2145303193C2779593128 @default.
- W2145303193 hasConceptScore W2145303193C33923547 @default.
- W2145303193 hasConceptScore W2145303193C529865628 @default.
- W2145303193 hasConceptScore W2145303193C78519656 @default.
- W2145303193 hasLocation W21453031931 @default.