Matches in SemOpenAlex for { <https://semopenalex.org/work/W2145388503> ?p ?o ?g. }
- W2145388503 abstract "Traumatic brain injury (TBI) can be caused by road traffic, sports-related or other types of accidents and often leads to permanent health issues or even death. For a good prevention or diagnosis of TBI, brain injury criteria are used to assess the probability of brain injury as a result of a mechanical insult. TBI is concerned with a wide range of length scales from several decimeters at the head level, where the mechanical insult is applied, to several micrometers at the cellular level, where the actual injury occurs in case of diffuse axonal injury (DAI). However, a well-defined relation between these levels has not been established yet. The most used method to assess the likelihood of brain injury is based on head level kinematics, but suffers from a number of drawbacks and does not consider the mechanisms by which brain injury develops. Finite element models are being developed to predict brain injury based on tissue level injury criteria. Because most finite element head models used nowadays for injury prediction do not contain anatomical details at the tissue level, the first part of this research is concerned with the influence of the heterogeneous substructure of the brain on the mechanical loading of the tissue. For this, four finite element models with different geometries were developed, where three models have a detailed geometry representative for a small part of the cerebral cortex including the sulci and gyri. The fourth model has a homogeneous geometry and it is used together with the heterogeneous models to analyze the influence of the morphological heterogeneities in the cerebral cortex. The results of the simulations show concentrations of the equivalent stress that correspond to pathological observations of injury in literature. This implies that tissue-based injury criteria may not be directly applied to most computational head models used nowadays, which do not account for sulci and gyri. The next step in this research is involved with the relation between the tissue and the cellular-level mechanics since the microstructural organization will affect the transfer of mechanical loads from the tissue level to the cellular constituents and will thereby affect the sensitivity of brain tissue to mechanical loads. According to literature, discrete axonal impairments caused by a mechanical insult on the brain are located where axons have to deviate from their normal course due to the presence of an inclusion, such as a blood vessel or a cell body. Based on the hypothesis that the observed discrete injuries are caused by the micromechanical heterogeneities, finite element models representing a critical volume for discrete local impairment of the axons have been developed. From the results of these simulations, concentrations of axonal strains are located at similar locations as the axonal impairments. Furthermore, it is concluded that the sensitivity of brain tissue to a mechanical load is orientation-dependent. In a multi-scale approach, finite element models of the head and the axonal level are coupled, where it is observed that the maximum axonal strains do not correlate with the strain levels of the head model in a straightforward manner. An anisotropic criterion for brain injury based on tissue-level strains is proposed that describes the orientation dependent sensitivity of brain tissue to mechanical loads and is derived from the observed axonal strain in the micromechanical simulations. With the anisotropic brain injury criterion, computational head models will be able to account for aspects of DAI at the cellular level and will therefore more reliably predict injury." @default.
- W2145388503 created "2016-06-24" @default.
- W2145388503 creator A5025950954 @default.
- W2145388503 creator A5053214326 @default.
- W2145388503 creator A5054129826 @default.
- W2145388503 creator A5091830127 @default.
- W2145388503 date "2007-01-01" @default.
- W2145388503 modified "2023-09-25" @default.
- W2145388503 title "Multi-scale mechanics of traumatic brain injury" @default.
- W2145388503 cites W140294227 @default.
- W2145388503 cites W1484837799 @default.
- W2145388503 cites W1530838044 @default.
- W2145388503 cites W1596392312 @default.
- W2145388503 cites W1599599357 @default.
- W2145388503 cites W161308917 @default.
- W2145388503 cites W1738825 @default.
- W2145388503 cites W1871779501 @default.
- W2145388503 cites W1891643587 @default.
- W2145388503 cites W1915093207 @default.
- W2145388503 cites W1920490291 @default.
- W2145388503 cites W1934091276 @default.
- W2145388503 cites W195912022 @default.
- W2145388503 cites W1963892608 @default.
- W2145388503 cites W1967813576 @default.
- W2145388503 cites W1971443275 @default.
- W2145388503 cites W1974049455 @default.
- W2145388503 cites W1975836557 @default.
- W2145388503 cites W1976740169 @default.
- W2145388503 cites W1977429857 @default.
- W2145388503 cites W1979227027 @default.
- W2145388503 cites W1983731649 @default.
- W2145388503 cites W1986550170 @default.
- W2145388503 cites W1987978143 @default.
- W2145388503 cites W1988808659 @default.
- W2145388503 cites W1990228210 @default.
- W2145388503 cites W1990901687 @default.
- W2145388503 cites W1993735414 @default.
- W2145388503 cites W1994166965 @default.
- W2145388503 cites W1997831000 @default.
- W2145388503 cites W1999668406 @default.
- W2145388503 cites W2001068966 @default.
- W2145388503 cites W2015419726 @default.
- W2145388503 cites W2015478111 @default.
- W2145388503 cites W2016126030 @default.
- W2145388503 cites W2027797673 @default.
- W2145388503 cites W2028494117 @default.
- W2145388503 cites W2030452070 @default.
- W2145388503 cites W2036923762 @default.
- W2145388503 cites W2041456603 @default.
- W2145388503 cites W2041781976 @default.
- W2145388503 cites W2042648622 @default.
- W2145388503 cites W2043159644 @default.
- W2145388503 cites W2045803922 @default.
- W2145388503 cites W2046593213 @default.
- W2145388503 cites W2047922146 @default.
- W2145388503 cites W2051146196 @default.
- W2145388503 cites W2051227605 @default.
- W2145388503 cites W2053770463 @default.
- W2145388503 cites W2055604817 @default.
- W2145388503 cites W2056046210 @default.
- W2145388503 cites W2059224163 @default.
- W2145388503 cites W2065360467 @default.
- W2145388503 cites W2067692269 @default.
- W2145388503 cites W2068418336 @default.
- W2145388503 cites W2071197145 @default.
- W2145388503 cites W2071352409 @default.
- W2145388503 cites W2071523084 @default.
- W2145388503 cites W2076493248 @default.
- W2145388503 cites W2077596732 @default.
- W2145388503 cites W2080090356 @default.
- W2145388503 cites W2081832788 @default.
- W2145388503 cites W2081838117 @default.
- W2145388503 cites W2082638532 @default.
- W2145388503 cites W2082727658 @default.
- W2145388503 cites W2086998939 @default.
- W2145388503 cites W2088301798 @default.
- W2145388503 cites W2091920346 @default.
- W2145388503 cites W2093281755 @default.
- W2145388503 cites W2095770088 @default.
- W2145388503 cites W2096010550 @default.
- W2145388503 cites W2097233605 @default.
- W2145388503 cites W2102582359 @default.
- W2145388503 cites W2107294026 @default.
- W2145388503 cites W2108662506 @default.
- W2145388503 cites W2110208125 @default.
- W2145388503 cites W2110333833 @default.
- W2145388503 cites W2110921107 @default.
- W2145388503 cites W2120741241 @default.
- W2145388503 cites W2130358104 @default.
- W2145388503 cites W2130410215 @default.
- W2145388503 cites W2138395084 @default.
- W2145388503 cites W2144007430 @default.
- W2145388503 cites W2148097662 @default.
- W2145388503 cites W2152099356 @default.
- W2145388503 cites W2154993350 @default.
- W2145388503 cites W2155868202 @default.
- W2145388503 cites W2160628568 @default.
- W2145388503 cites W2161205313 @default.
- W2145388503 cites W2164740405 @default.
- W2145388503 cites W2166739553 @default.