Matches in SemOpenAlex for { <https://semopenalex.org/work/W2145431570> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2145431570 endingPage "898" @default.
- W2145431570 startingPage "896" @default.
- W2145431570 abstract "Recently, a paper by Kim et al. [1] in Nature Medicine magazine in January, 2013 showed that apelin (also known as APLN) inhibits fibroblast growth factor 2 (FGF2) and FGF receptor 1 (FGFR1) expression to ameliorate pulmonary hypertension by regulating the expression of miR-424 and miR-503. This study revealed the molecular mechanism of apelin in inhibiting the process of pulmonary arterial hypertension (PAH) and discovered the role of apelin in regulating miRNA generation for the first time. miRNA functions in the transcriptional regulation of gene expression to control cellular processes. miRNA is a key regulatory factor of protein expression, but the generation and regulation mechanism of miRNA is still unclear. These novel findings bring us inspiration for further research, especially on the mechanism of miRNA generation. Experiments on revealing endogenous active substance, which regulates the generation of miRNAs or revealing miRNAs that regulate the expression of apelin, may bring more breakthroughs in the future. PAH is characterized by vascular remodeling associated with obliteration of pulmonary arterioles and formation of plexiform lesions composed of hyperproliferative endothelial and vascular smooth muscle cells. Recent studies have suggested that apelin is a novel PAH endothelial function homeostasis-related factor. Alastalo et al. [2] found that apelin expression is decreased in endothelial cells of the pulmonary hypertension. However, the exact mechanism remains poorly understood. FGF2 is highly expressed in PAH and plays an important role in the progress of PAH by promoting proliferation [3] and inhibiting apoptosis [4] in endothelial cells and smooth muscle cells. miRNA is a fundamental factor of numerous cellular events by regulating RNA modification, transcription, and translation. Current studies of miRNA showed its critical function in the development of PAH. Morphological changes of plexiform vasculopathy in the end-stage PAH lung are reflected by alterations at the miRNA level [5]. Kim et al. [1] integrated these isolated observations into a mechanism and identified the miRNA-FGF signaling axis that is apelin-dependent in the maintenance of pulmonary vascular homeostasis. Previous studies found that hypoxia induces endothelial function injury. Accumulating evidence revealed that hypoxia also induces the expression of apelin [6,7],which is reduced in PAH. Actually, apelin expression and secretion, which are strongly induced under hypoxic conditions, are the early response [7]. Mechanisms that maintain sustained expression of apelin may contribute to preventing injuries caused by hypoxia and restoring the function of endothelial cells in PAH. These findings supported the development of novel therapeutic strategies to augment apelin, as well as to inhibit FGF2 signaling. In portal vein hypertension, another vascular disease, apelin/APJ presents a novel therapeutic target. APJ antagonist F13A effectively decreased the formation of portosystemic collateral vessels [8]. In atherosclerosis (AS), increasing evidence tends to prove that apelin is a novel therapeutic target for AS [9]. Although no effective treatment for PAH is available at present, certain medicines are available to mitigate disease progression. Considering its protective effect on vasodilatory and endothelial cells, apelin may be a more efficacious target for PAH therapy. In past decades, apelin was suggested to involve in numerous physiological processes, including vasodilation, systole, salt and water balance, as well as pathophysiological processes such as high blood pressure, cancer, and so on. There must be many other undiscovered functions of apelin. The findings of the intimate relationship between apelin and miRNA provide much fresh thinking for the study of apelin. The study on miR-424 and miR-503 will help to discover additional features of apelin. Park et al. [10] found that the high expression of miR-424 and miR-503 is significantly implicated in chemoresistance and tumor progression in ovarian cancer, which probably regulates cancer stem cell processes. These results indicated that apelin probably plays a vital role in epithelial mesenchymal transition in cancers. A recent study revealed that miR-503 makes women predispose to lupus [11]. The relationship between apelin and lupus has not been explored. More evidence is required to confirm whether apelin controls the effects of miR-424 and miR-503 in the above process. There are some controversial reports of apelin/APJ effects on AS. Chun et al. [12] found that apelin decreases AS formation by blocking AngII actions in ApoE-KO mice. But Hashimoto et al. [13] Acta Biochim Biophys Sin 2013, 45: 896–898 |a The Author 2013. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. DOI: 10.1093/abbs/gmt090. Advance Access Publication 28 August 2013" @default.
- W2145431570 created "2016-06-24" @default.
- W2145431570 creator A5069680429 @default.
- W2145431570 creator A5074860482 @default.
- W2145431570 creator A5077262017 @default.
- W2145431570 creator A5080949261 @default.
- W2145431570 date "2013-10-01" @default.
- W2145431570 modified "2023-09-27" @default.
- W2145431570 title "Unanticipated role of apelin: regulation of miRNA generation" @default.
- W2145431570 cites W1996253887 @default.
- W2145431570 cites W2002925464 @default.
- W2145431570 cites W2009469392 @default.
- W2145431570 cites W2014154760 @default.
- W2145431570 cites W2049977668 @default.
- W2145431570 cites W2054349237 @default.
- W2145431570 cites W2084584671 @default.
- W2145431570 cites W2101183183 @default.
- W2145431570 cites W2110918719 @default.
- W2145431570 cites W2111567722 @default.
- W2145431570 cites W2113359468 @default.
- W2145431570 cites W2119662325 @default.
- W2145431570 cites W2157122261 @default.
- W2145431570 cites W2157869421 @default.
- W2145431570 cites W2158244761 @default.
- W2145431570 cites W2168274110 @default.
- W2145431570 doi "https://doi.org/10.1093/abbs/gmt090" @default.
- W2145431570 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23985306" @default.
- W2145431570 hasPublicationYear "2013" @default.
- W2145431570 type Work @default.
- W2145431570 sameAs 2145431570 @default.
- W2145431570 citedByCount "6" @default.
- W2145431570 countsByYear W21454315702014 @default.
- W2145431570 countsByYear W21454315702018 @default.
- W2145431570 countsByYear W21454315702022 @default.
- W2145431570 crossrefType "journal-article" @default.
- W2145431570 hasAuthorship W2145431570A5069680429 @default.
- W2145431570 hasAuthorship W2145431570A5074860482 @default.
- W2145431570 hasAuthorship W2145431570A5077262017 @default.
- W2145431570 hasAuthorship W2145431570A5080949261 @default.
- W2145431570 hasConcept C104317684 @default.
- W2145431570 hasConcept C145059251 @default.
- W2145431570 hasConcept C170493617 @default.
- W2145431570 hasConcept C2779546753 @default.
- W2145431570 hasConcept C54355233 @default.
- W2145431570 hasConcept C70721500 @default.
- W2145431570 hasConcept C86803240 @default.
- W2145431570 hasConcept C95444343 @default.
- W2145431570 hasConceptScore W2145431570C104317684 @default.
- W2145431570 hasConceptScore W2145431570C145059251 @default.
- W2145431570 hasConceptScore W2145431570C170493617 @default.
- W2145431570 hasConceptScore W2145431570C2779546753 @default.
- W2145431570 hasConceptScore W2145431570C54355233 @default.
- W2145431570 hasConceptScore W2145431570C70721500 @default.
- W2145431570 hasConceptScore W2145431570C86803240 @default.
- W2145431570 hasConceptScore W2145431570C95444343 @default.
- W2145431570 hasIssue "10" @default.
- W2145431570 hasLocation W21454315701 @default.
- W2145431570 hasLocation W21454315702 @default.
- W2145431570 hasOpenAccess W2145431570 @default.
- W2145431570 hasPrimaryLocation W21454315701 @default.
- W2145431570 hasRelatedWork W1972785590 @default.
- W2145431570 hasRelatedWork W2046406569 @default.
- W2145431570 hasRelatedWork W2074821116 @default.
- W2145431570 hasRelatedWork W2100692480 @default.
- W2145431570 hasRelatedWork W2118558281 @default.
- W2145431570 hasRelatedWork W2513408624 @default.
- W2145431570 hasRelatedWork W2594860815 @default.
- W2145431570 hasRelatedWork W3117169687 @default.
- W2145431570 hasRelatedWork W3136905963 @default.
- W2145431570 hasRelatedWork W3195428361 @default.
- W2145431570 hasVolume "45" @default.
- W2145431570 isParatext "false" @default.
- W2145431570 isRetracted "false" @default.
- W2145431570 magId "2145431570" @default.
- W2145431570 workType "article" @default.