Matches in SemOpenAlex for { <https://semopenalex.org/work/W2145508720> ?p ?o ?g. }
- W2145508720 endingPage "1508" @default.
- W2145508720 startingPage "1494" @default.
- W2145508720 abstract "Although planetary mantles are viscoelastic media, numerical models of thermal convection in a viscoelastic spherical shell are still very challenging. Here, we examine the validity of simplified mechanical and rheological frameworks classically used to approximate viscoelastic dynamic topography. We compare three simplified approaches to a linear Maxwell viscoelastic shell with a pseudo upper free-surface, considered as the reference model. A viscous model with a free-slip boundary condition at the surface correctly reproduces the final relaxed shape of the viscoelastic body but it cannot reproduce the time evolution of the viscoelastic topography. Nevertheless, characterizing the topography development is important since it can represent a significant fraction of the history for planets having a thick and rigid lithosphere (e.g. Mars). A viscous model with a pseudo free-surface, despite its time-dependency, also systematically fails to describe correctly these transient stages. An elastic filtering of the instantaneous viscous topography is required to capture the essence of the time evolution of the topography. We show that a single effective elastic thickness is needed to correctly reproduce the constant transient viscoelastic topography obtained when the lithosphere corresponds to a step-like viscosity variation, while a time-dependence of the effective elastic thickness must be considered to take account of realistic temperature-dependent viscosity variations in the lithosphere. In this case, the appropriate thickness of the elastic shell can be evaluated, at a given instant, with a simple procedure based on the local Maxwell time. Furthermore, if the elastic filtering is performed using the thin elastic shell formulation, an unrealistic degree-dependence of the thickness of the elastic shell is needed to correctly approximate the viscoelastic topography. We show that a model that fully couples a viscous body to an elastic shell of finite thickness estimated using the local Maxwell time gives the best approximation of the viscoelastic deformation, whatever the degree of the load and the time of loading." @default.
- W2145508720 created "2016-06-24" @default.
- W2145508720 creator A5000967857 @default.
- W2145508720 creator A5065131949 @default.
- W2145508720 creator A5077786375 @default.
- W2145508720 date "2013-10-03" @default.
- W2145508720 modified "2023-10-13" @default.
- W2145508720 title "Predicting surface dynamic topographies of stagnant lid planetary bodies" @default.
- W2145508720 cites W1968811722 @default.
- W2145508720 cites W1974963224 @default.
- W2145508720 cites W1977202349 @default.
- W2145508720 cites W1980918397 @default.
- W2145508720 cites W1993611590 @default.
- W2145508720 cites W2007377958 @default.
- W2145508720 cites W2014348206 @default.
- W2145508720 cites W2032939543 @default.
- W2145508720 cites W2033486558 @default.
- W2145508720 cites W2036531346 @default.
- W2145508720 cites W2049917533 @default.
- W2145508720 cites W2060907943 @default.
- W2145508720 cites W2063287321 @default.
- W2145508720 cites W2063310439 @default.
- W2145508720 cites W2064127243 @default.
- W2145508720 cites W2064469809 @default.
- W2145508720 cites W2073311665 @default.
- W2145508720 cites W2080519657 @default.
- W2145508720 cites W2084099459 @default.
- W2145508720 cites W2087345911 @default.
- W2145508720 cites W2093295975 @default.
- W2145508720 cites W2097784732 @default.
- W2145508720 cites W2108506031 @default.
- W2145508720 cites W2112544671 @default.
- W2145508720 cites W2112769507 @default.
- W2145508720 cites W2115674503 @default.
- W2145508720 cites W2117053332 @default.
- W2145508720 cites W2120345909 @default.
- W2145508720 cites W2122705508 @default.
- W2145508720 cites W2129422558 @default.
- W2145508720 cites W2140202552 @default.
- W2145508720 cites W2150949776 @default.
- W2145508720 cites W2156410159 @default.
- W2145508720 cites W2159045318 @default.
- W2145508720 cites W2160583601 @default.
- W2145508720 cites W2168514248 @default.
- W2145508720 cites W3098846067 @default.
- W2145508720 cites W4205785249 @default.
- W2145508720 cites W4235072337 @default.
- W2145508720 doi "https://doi.org/10.1093/gji/ggt363" @default.
- W2145508720 hasPublicationYear "2013" @default.
- W2145508720 type Work @default.
- W2145508720 sameAs 2145508720 @default.
- W2145508720 citedByCount "3" @default.
- W2145508720 countsByYear W21455087202014 @default.
- W2145508720 countsByYear W21455087202019 @default.
- W2145508720 countsByYear W21455087202022 @default.
- W2145508720 crossrefType "journal-article" @default.
- W2145508720 hasAuthorship W2145508720A5000967857 @default.
- W2145508720 hasAuthorship W2145508720A5065131949 @default.
- W2145508720 hasAuthorship W2145508720A5077786375 @default.
- W2145508720 hasBestOaLocation W21455087201 @default.
- W2145508720 hasConcept C121332964 @default.
- W2145508720 hasConcept C127172972 @default.
- W2145508720 hasConcept C127313418 @default.
- W2145508720 hasConcept C151730666 @default.
- W2145508720 hasConcept C159985019 @default.
- W2145508720 hasConcept C16942324 @default.
- W2145508720 hasConcept C171889981 @default.
- W2145508720 hasConcept C186541917 @default.
- W2145508720 hasConcept C190799397 @default.
- W2145508720 hasConcept C192562407 @default.
- W2145508720 hasConcept C200990466 @default.
- W2145508720 hasConcept C2524010 @default.
- W2145508720 hasConcept C2776799497 @default.
- W2145508720 hasConcept C2781052500 @default.
- W2145508720 hasConcept C33923547 @default.
- W2145508720 hasConcept C57879066 @default.
- W2145508720 hasConcept C71351571 @default.
- W2145508720 hasConcept C74650414 @default.
- W2145508720 hasConcept C77928131 @default.
- W2145508720 hasConcept C8058405 @default.
- W2145508720 hasConcept C97355855 @default.
- W2145508720 hasConceptScore W2145508720C121332964 @default.
- W2145508720 hasConceptScore W2145508720C127172972 @default.
- W2145508720 hasConceptScore W2145508720C127313418 @default.
- W2145508720 hasConceptScore W2145508720C151730666 @default.
- W2145508720 hasConceptScore W2145508720C159985019 @default.
- W2145508720 hasConceptScore W2145508720C16942324 @default.
- W2145508720 hasConceptScore W2145508720C171889981 @default.
- W2145508720 hasConceptScore W2145508720C186541917 @default.
- W2145508720 hasConceptScore W2145508720C190799397 @default.
- W2145508720 hasConceptScore W2145508720C192562407 @default.
- W2145508720 hasConceptScore W2145508720C200990466 @default.
- W2145508720 hasConceptScore W2145508720C2524010 @default.
- W2145508720 hasConceptScore W2145508720C2776799497 @default.
- W2145508720 hasConceptScore W2145508720C2781052500 @default.
- W2145508720 hasConceptScore W2145508720C33923547 @default.
- W2145508720 hasConceptScore W2145508720C57879066 @default.
- W2145508720 hasConceptScore W2145508720C71351571 @default.