Matches in SemOpenAlex for { <https://semopenalex.org/work/W2145587059> ?p ?o ?g. }
- W2145587059 endingPage "989" @default.
- W2145587059 startingPage "975" @default.
- W2145587059 abstract "For the quantitative analysis of ligand-receptor dynamic positron emission tomography (PET) studies, it is often desirable to apply reference tissue methods that eliminate the need for arterial blood sampling. A common technique is to apply a simplified reference tissue model (SRTM). Applications of this method are generally based on an analytical solution of the SRTM equation with parameters estimated by nonlinear regression. In this study, we derive, based on the same assumptions used to derive the SRTM, a new set of operational equations of integral form with parameters directly estimated by conventional weighted linear regression (WLR). In addition, a linear regression with spatial constraint (LRSC) algorithm is developed for parametric imaging to reduce the effects of high noise levels in pixel time activity curves that are typical of PET dynamic data. For comparison, conventional weighted nonlinear regression with the Marquardt algorithm (WNLRM) and nonlinear ridge regression with spatial constraint (NLRRSC) were also implemented using the nonlinear analytical solution of the SRTM equation. In contrast to the other three methods, LRSC reduces the percent root mean square error of the estimated parameters, especially at higher noise levels. For estimation of binding potential (BP), WLR and LRSC show similar variance even at high noise levels, but LRSC yields a smaller bias. Results from human studies demonstrate that LRSC produces high-quality parametric images. The variance of R(1) and k(2) images generated by WLR, WNLRM, and NLRRSC can be decreased 30%-60% by using LRSC. The quality of the BP images generated by WLR and LRSC is visually comparable, and the variance of BP images generated by WNLRM can be reduced 10%-40% by WLR or LRSC. The BP estimates obtained using WLR are 3%-5% lower than those estimated by LRSC. We conclude that the new linear equations yield a reliable, computationally efficient, and robust LRSC algorithm to generate parametric images of ligand-receptor dynamic PET studies." @default.
- W2145587059 created "2016-06-24" @default.
- W2145587059 creator A5000122559 @default.
- W2145587059 creator A5056856413 @default.
- W2145587059 creator A5067080265 @default.
- W2145587059 creator A5068397446 @default.
- W2145587059 creator A5088972172 @default.
- W2145587059 date "2003-04-01" @default.
- W2145587059 modified "2023-10-11" @default.
- W2145587059 title "Linear regression with spatial constraint to generate parametric images of ligand-receptor dynamic PET studies with a simplified reference tissue model" @default.
- W2145587059 cites W1540089293 @default.
- W2145587059 cites W1966011527 @default.
- W2145587059 cites W1973611024 @default.
- W2145587059 cites W1976112975 @default.
- W2145587059 cites W1976630512 @default.
- W2145587059 cites W1982152081 @default.
- W2145587059 cites W1985050254 @default.
- W2145587059 cites W1985808875 @default.
- W2145587059 cites W1997485587 @default.
- W2145587059 cites W2001461281 @default.
- W2145587059 cites W2003090874 @default.
- W2145587059 cites W2007490806 @default.
- W2145587059 cites W2007864888 @default.
- W2145587059 cites W2008413151 @default.
- W2145587059 cites W2025307681 @default.
- W2145587059 cites W2028888440 @default.
- W2145587059 cites W2033429303 @default.
- W2145587059 cites W2038018468 @default.
- W2145587059 cites W2043878814 @default.
- W2145587059 cites W2046045427 @default.
- W2145587059 cites W2051228374 @default.
- W2145587059 cites W2054929374 @default.
- W2145587059 cites W2057824785 @default.
- W2145587059 cites W2063017390 @default.
- W2145587059 cites W2076560915 @default.
- W2145587059 cites W2079321196 @default.
- W2145587059 cites W2087070363 @default.
- W2145587059 cites W2091088809 @default.
- W2145587059 cites W2096998012 @default.
- W2145587059 cites W2114676676 @default.
- W2145587059 cites W2115212575 @default.
- W2145587059 cites W2117671988 @default.
- W2145587059 cites W2117725128 @default.
- W2145587059 cites W2121370989 @default.
- W2145587059 cites W2121878832 @default.
- W2145587059 cites W2121887890 @default.
- W2145587059 cites W2150025223 @default.
- W2145587059 cites W2156317861 @default.
- W2145587059 cites W2164796575 @default.
- W2145587059 cites W4234753661 @default.
- W2145587059 cites W4255455317 @default.
- W2145587059 cites W4256202811 @default.
- W2145587059 doi "https://doi.org/10.1016/s1053-8119(03)00017-x" @default.
- W2145587059 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/12725772" @default.
- W2145587059 hasPublicationYear "2003" @default.
- W2145587059 type Work @default.
- W2145587059 sameAs 2145587059 @default.
- W2145587059 citedByCount "122" @default.
- W2145587059 countsByYear W21455870592012 @default.
- W2145587059 countsByYear W21455870592013 @default.
- W2145587059 countsByYear W21455870592014 @default.
- W2145587059 countsByYear W21455870592015 @default.
- W2145587059 countsByYear W21455870592016 @default.
- W2145587059 countsByYear W21455870592017 @default.
- W2145587059 countsByYear W21455870592018 @default.
- W2145587059 countsByYear W21455870592019 @default.
- W2145587059 countsByYear W21455870592020 @default.
- W2145587059 countsByYear W21455870592021 @default.
- W2145587059 countsByYear W21455870592022 @default.
- W2145587059 countsByYear W21455870592023 @default.
- W2145587059 crossrefType "journal-article" @default.
- W2145587059 hasAuthorship W2145587059A5000122559 @default.
- W2145587059 hasAuthorship W2145587059A5056856413 @default.
- W2145587059 hasAuthorship W2145587059A5067080265 @default.
- W2145587059 hasAuthorship W2145587059A5068397446 @default.
- W2145587059 hasAuthorship W2145587059A5088972172 @default.
- W2145587059 hasConcept C105795698 @default.
- W2145587059 hasConcept C11413529 @default.
- W2145587059 hasConcept C115961682 @default.
- W2145587059 hasConcept C117251300 @default.
- W2145587059 hasConcept C121332964 @default.
- W2145587059 hasConcept C152877465 @default.
- W2145587059 hasConcept C154945302 @default.
- W2145587059 hasConcept C158622935 @default.
- W2145587059 hasConcept C33923547 @default.
- W2145587059 hasConcept C41008148 @default.
- W2145587059 hasConcept C46889948 @default.
- W2145587059 hasConcept C48921125 @default.
- W2145587059 hasConcept C62520636 @default.
- W2145587059 hasConcept C83546350 @default.
- W2145587059 hasConcept C99498987 @default.
- W2145587059 hasConceptScore W2145587059C105795698 @default.
- W2145587059 hasConceptScore W2145587059C11413529 @default.
- W2145587059 hasConceptScore W2145587059C115961682 @default.
- W2145587059 hasConceptScore W2145587059C117251300 @default.
- W2145587059 hasConceptScore W2145587059C121332964 @default.
- W2145587059 hasConceptScore W2145587059C152877465 @default.
- W2145587059 hasConceptScore W2145587059C154945302 @default.