Matches in SemOpenAlex for { <https://semopenalex.org/work/W2146000945> ?p ?o ?g. }
- W2146000945 endingPage "926" @default.
- W2146000945 startingPage "912" @default.
- W2146000945 abstract "We address the sparse signal recovery problem in the context of multiple measurement vectors (MMV) when elements in each nonzero row of the solution matrix are temporally correlated. Existing algorithms do not consider such temporal correlation and thus their performance degrades significantly with the correlation. In this paper, we propose a block sparse Bayesian learning framework which models the temporal correlation. We derive two sparse Bayesian learning (SBL) algorithms, which have superior recovery performance compared to existing algorithms, especially in the presence of high temporal correlation. Furthermore, our algorithms are better at handling highly underdetermined problems and require less row-sparsity on the solution matrix. We also provide analysis of the global and local minima of their cost function, and show that the SBL cost function has the very desirable property that the global minimum is at the sparsest solution to the MMV problem. Extensive experiments also provide some interesting results that motivate future theoretical research on the MMV model." @default.
- W2146000945 created "2016-06-24" @default.
- W2146000945 creator A5001700017 @default.
- W2146000945 creator A5060575116 @default.
- W2146000945 date "2011-09-01" @default.
- W2146000945 modified "2023-10-16" @default.
- W2146000945 title "Sparse Signal Recovery With Temporally Correlated Source Vectors Using Sparse Bayesian Learning" @default.
- W2146000945 cites W1480312878 @default.
- W2146000945 cites W1648445109 @default.
- W2146000945 cites W1973503417 @default.
- W2146000945 cites W1974774078 @default.
- W2146000945 cites W1983481547 @default.
- W2146000945 cites W1986931325 @default.
- W2146000945 cites W1994309289 @default.
- W2146000945 cites W2029299478 @default.
- W2146000945 cites W2045491595 @default.
- W2146000945 cites W2056775112 @default.
- W2146000945 cites W2065919982 @default.
- W2146000945 cites W2071284784 @default.
- W2146000945 cites W2074054045 @default.
- W2146000945 cites W2076776015 @default.
- W2146000945 cites W2103519107 @default.
- W2146000945 cites W2104266187 @default.
- W2146000945 cites W2107861471 @default.
- W2146000945 cites W2121542499 @default.
- W2146000945 cites W2121830132 @default.
- W2146000945 cites W2122315118 @default.
- W2146000945 cites W2123496278 @default.
- W2146000945 cites W2127870457 @default.
- W2146000945 cites W2129812935 @default.
- W2146000945 cites W2135780853 @default.
- W2146000945 cites W2138019504 @default.
- W2146000945 cites W2145096794 @default.
- W2146000945 cites W2147276092 @default.
- W2146000945 cites W2147549783 @default.
- W2146000945 cites W2148154358 @default.
- W2146000945 cites W2152279006 @default.
- W2146000945 cites W2154332973 @default.
- W2146000945 cites W2156587627 @default.
- W2146000945 cites W2161765392 @default.
- W2146000945 cites W2162409952 @default.
- W2146000945 cites W2166221887 @default.
- W2146000945 cites W2166823048 @default.
- W2146000945 cites W2168123400 @default.
- W2146000945 cites W2169326247 @default.
- W2146000945 cites W2240492615 @default.
- W2146000945 cites W2540033587 @default.
- W2146000945 cites W2544619753 @default.
- W2146000945 cites W3124114587 @default.
- W2146000945 cites W3125735862 @default.
- W2146000945 cites W4235713725 @default.
- W2146000945 cites W4250589301 @default.
- W2146000945 cites W4250955649 @default.
- W2146000945 doi "https://doi.org/10.1109/jstsp.2011.2159773" @default.
- W2146000945 hasPublicationYear "2011" @default.
- W2146000945 type Work @default.
- W2146000945 sameAs 2146000945 @default.
- W2146000945 citedByCount "697" @default.
- W2146000945 countsByYear W21460009452012 @default.
- W2146000945 countsByYear W21460009452013 @default.
- W2146000945 countsByYear W21460009452014 @default.
- W2146000945 countsByYear W21460009452015 @default.
- W2146000945 countsByYear W21460009452016 @default.
- W2146000945 countsByYear W21460009452017 @default.
- W2146000945 countsByYear W21460009452018 @default.
- W2146000945 countsByYear W21460009452019 @default.
- W2146000945 countsByYear W21460009452020 @default.
- W2146000945 countsByYear W21460009452021 @default.
- W2146000945 countsByYear W21460009452022 @default.
- W2146000945 countsByYear W21460009452023 @default.
- W2146000945 crossrefType "journal-article" @default.
- W2146000945 hasAuthorship W2146000945A5001700017 @default.
- W2146000945 hasAuthorship W2146000945A5060575116 @default.
- W2146000945 hasBestOaLocation W21460009452 @default.
- W2146000945 hasConcept C106487976 @default.
- W2146000945 hasConcept C107673813 @default.
- W2146000945 hasConcept C111472728 @default.
- W2146000945 hasConcept C11413529 @default.
- W2146000945 hasConcept C121332964 @default.
- W2146000945 hasConcept C134306372 @default.
- W2146000945 hasConcept C138885662 @default.
- W2146000945 hasConcept C151730666 @default.
- W2146000945 hasConcept C154945302 @default.
- W2146000945 hasConcept C159985019 @default.
- W2146000945 hasConcept C160234255 @default.
- W2146000945 hasConcept C163716315 @default.
- W2146000945 hasConcept C179690561 @default.
- W2146000945 hasConcept C186633575 @default.
- W2146000945 hasConcept C189950617 @default.
- W2146000945 hasConcept C192562407 @default.
- W2146000945 hasConcept C2524010 @default.
- W2146000945 hasConcept C2777210771 @default.
- W2146000945 hasConcept C2779343474 @default.
- W2146000945 hasConcept C33923547 @default.
- W2146000945 hasConcept C41008148 @default.
- W2146000945 hasConcept C56372850 @default.
- W2146000945 hasConcept C62520636 @default.
- W2146000945 hasConcept C86803240 @default.