Matches in SemOpenAlex for { <https://semopenalex.org/work/W2146116815> ?p ?o ?g. }
- W2146116815 endingPage "2" @default.
- W2146116815 startingPage "SMP 33" @default.
- W2146116815 abstract "[1] We appreciate Kikuchi and Araki's [2002] giving us the opportunity to compare in more detail the two different models of how the preliminary reverse impulses (PRI) of sudden commencements (SC) propagate to the ground. The inconsistency between the Earth-ionosphere waveguide model [Kikuchi and Araki, 1979a, 1979b] and our observations [Chi et al., 2001] is most clearly demonstrated by the discontinuity in PRI arrival time at approximately the plasmapause latitude as shown in Figure 1. Neither the waveguide mode nor any SC-related current (including the Chapman–Ferraro current and the field-aligned current) can result in this jump in arrival time across the plasmapause latitude. On the contrary, this discontinuity is well explained by Tamao's MHD waves model [Tamao, 1964] because the wave slows down as it encounters the dense plasmasphere. [2] Although the MHD wave model of Chi et al. [2001] was only applied to the arrival time of PRIs, it can explain also the observed onset time of PRIs. The onset signals the first wave front reaching the observer, whereas the arrival time, defined by the time at maximum amplitude, represents the arrival of wave energy coming from all possible propagation paths. In the MHD waves model, the first wave front arriving at the ground observer travels along a path very close to the line connecting Q, P1, and P (see Figure 2). For any different location on the Earth, the corresponding wave path only shifts slightly in space, and therefore the travel time would almost be identical. This explains why the onset occurs simultaneously across all latitudes. The travel path that conserves the greatest wave energy varies more significantly as the location of ground station changes, and therefore there is a more visible differentiation in the arrival time. [3] The notion of the invisibility of the converted transverse (CT) mode for ground observers is unlikely to be applicable in reality. A fast-mode wave can be converted into Alfvén waves in the inhomogeneous magnetosphere [Southwood and Kivelson, 1990; Itonaga and Yoshikawa, 1996]. As a consequence, the MHD waves that carry the PRI signal to low latitudes can no longer be perfectly screened by the ionosphere. The observation of an SC signal (mainly in the transverse mode) above the E region and the PRI simultaneously recorded by ground stations below the spacecraft path [Araki et al., 1984] provides strong evidence that transverse SC signals in space can be seen on the ground. [4] It is important to note that the MHD waves model also explains the propagation of the magnetic pulsations driven by solar wind pulses. Studies have found that some ground magnetic pulsations have one-to-one correspondence to solar wind pressure variations [Korotova and Sibeck, 1994, 1995; Matsuoka et al., 1995], and travel time analysis indicates that the wave signals travel in the magnetosphere at MHD wave speeds. In particular, Weygand et al. [2001] showed that the solar wind-driven Pc5 pulsations observed by a chain of ground stations at different latitudes exhibited the same arrival-time pattern as the zigzag profile shown in our PRI study. These driven pulsations and SCs have many similarities in physics because both of them originate from changes in solar wind pressure. However, it does not appear that the Earth-ionosphere waveguide model can explain the propagation of these pulsations. [5] In addition to our study that shows inconsistency with the Earth-ionosphere waveguide model, the observations of ground electric fields associated with PRI signals contradict what the waveguide model predicts. Yumoto et al. [1997] presented a case in which the amplitude of the preliminary impulse signal is ≃1 nT. The vertical electric field would have had a perturbation ∼102 mV/m if the signal were a zeroth-order TM mode, but the observation shows that it was less than 1 mV/m. Further study on the Earth-ionosphere waveguide, such as numerical simulation of the subject, could be valuable in examining the model in detail. [6] In summary, we believe it is correct to say that MHD waves provide the dominant scheme for PRI signals to propagate to low-latitude regions. The MHD theory of PRI propagation can certainly be refined in several aspects, such as the effect of inhomogeneous plasma and the propagation of signals through the realistic ionosphere. However, the Earth-ionosphere waveguide theory requires very significant changes if it is to explain the timing of PRI propagation and resolve the differences between its theory and observations." @default.
- W2146116815 created "2016-06-24" @default.
- W2146116815 creator A5008336061 @default.
- W2146116815 creator A5011650421 @default.
- W2146116815 creator A5028105289 @default.
- W2146116815 creator A5030364013 @default.
- W2146116815 creator A5035547645 @default.
- W2146116815 creator A5048222724 @default.
- W2146116815 creator A5066705692 @default.
- W2146116815 creator A5067228202 @default.
- W2146116815 creator A5080408651 @default.
- W2146116815 creator A5088852805 @default.
- W2146116815 creator A5068601349 @default.
- W2146116815 date "2002-12-01" @default.
- W2146116815 modified "2023-10-10" @default.
- W2146116815 title "Reply to comment by T. Kikuchi and T. Araki on “Propagation of the preliminary reverse impulse of sudden commencements to low latitudes”" @default.
- W2146116815 cites W1977594794 @default.
- W2146116815 cites W1989649189 @default.
- W2146116815 cites W1997861996 @default.
- W2146116815 cites W2026512931 @default.
- W2146116815 cites W2033931486 @default.
- W2146116815 cites W2038530853 @default.
- W2146116815 cites W2046439915 @default.
- W2146116815 cites W2063584752 @default.
- W2146116815 cites W2068235963 @default.
- W2146116815 cites W2085024407 @default.
- W2146116815 cites W2086081909 @default.
- W2146116815 doi "https://doi.org/10.1029/2002ja009369" @default.
- W2146116815 hasPublicationYear "2002" @default.
- W2146116815 type Work @default.
- W2146116815 sameAs 2146116815 @default.
- W2146116815 citedByCount "8" @default.
- W2146116815 countsByYear W21461168152019 @default.
- W2146116815 countsByYear W21461168152020 @default.
- W2146116815 countsByYear W21461168152021 @default.
- W2146116815 crossrefType "journal-article" @default.
- W2146116815 hasAuthorship W2146116815A5008336061 @default.
- W2146116815 hasAuthorship W2146116815A5011650421 @default.
- W2146116815 hasAuthorship W2146116815A5028105289 @default.
- W2146116815 hasAuthorship W2146116815A5030364013 @default.
- W2146116815 hasAuthorship W2146116815A5035547645 @default.
- W2146116815 hasAuthorship W2146116815A5048222724 @default.
- W2146116815 hasAuthorship W2146116815A5066705692 @default.
- W2146116815 hasAuthorship W2146116815A5067228202 @default.
- W2146116815 hasAuthorship W2146116815A5068601349 @default.
- W2146116815 hasAuthorship W2146116815A5080408651 @default.
- W2146116815 hasAuthorship W2146116815A5088852805 @default.
- W2146116815 hasBestOaLocation W21461168151 @default.
- W2146116815 hasConcept C105795698 @default.
- W2146116815 hasConcept C115260700 @default.
- W2146116815 hasConcept C116403925 @default.
- W2146116815 hasConcept C118691173 @default.
- W2146116815 hasConcept C120665830 @default.
- W2146116815 hasConcept C121332964 @default.
- W2146116815 hasConcept C122523270 @default.
- W2146116815 hasConcept C127313418 @default.
- W2146116815 hasConcept C130443932 @default.
- W2146116815 hasConcept C13280743 @default.
- W2146116815 hasConcept C134306372 @default.
- W2146116815 hasConcept C15627037 @default.
- W2146116815 hasConcept C180205008 @default.
- W2146116815 hasConcept C2777042112 @default.
- W2146116815 hasConcept C31532427 @default.
- W2146116815 hasConcept C33923547 @default.
- W2146116815 hasConcept C41479618 @default.
- W2146116815 hasConcept C62520636 @default.
- W2146116815 hasConcept C8058405 @default.
- W2146116815 hasConceptScore W2146116815C105795698 @default.
- W2146116815 hasConceptScore W2146116815C115260700 @default.
- W2146116815 hasConceptScore W2146116815C116403925 @default.
- W2146116815 hasConceptScore W2146116815C118691173 @default.
- W2146116815 hasConceptScore W2146116815C120665830 @default.
- W2146116815 hasConceptScore W2146116815C121332964 @default.
- W2146116815 hasConceptScore W2146116815C122523270 @default.
- W2146116815 hasConceptScore W2146116815C127313418 @default.
- W2146116815 hasConceptScore W2146116815C130443932 @default.
- W2146116815 hasConceptScore W2146116815C13280743 @default.
- W2146116815 hasConceptScore W2146116815C134306372 @default.
- W2146116815 hasConceptScore W2146116815C15627037 @default.
- W2146116815 hasConceptScore W2146116815C180205008 @default.
- W2146116815 hasConceptScore W2146116815C2777042112 @default.
- W2146116815 hasConceptScore W2146116815C31532427 @default.
- W2146116815 hasConceptScore W2146116815C33923547 @default.
- W2146116815 hasConceptScore W2146116815C41479618 @default.
- W2146116815 hasConceptScore W2146116815C62520636 @default.
- W2146116815 hasConceptScore W2146116815C8058405 @default.
- W2146116815 hasIssue "A12" @default.
- W2146116815 hasLocation W21461168151 @default.
- W2146116815 hasOpenAccess W2146116815 @default.
- W2146116815 hasPrimaryLocation W21461168151 @default.
- W2146116815 hasRelatedWork W162062087 @default.
- W2146116815 hasRelatedWork W1989965977 @default.
- W2146116815 hasRelatedWork W2026226327 @default.
- W2146116815 hasRelatedWork W2056095867 @default.
- W2146116815 hasRelatedWork W2085032340 @default.
- W2146116815 hasRelatedWork W2181452467 @default.
- W2146116815 hasRelatedWork W2232767080 @default.
- W2146116815 hasRelatedWork W2373997809 @default.