Matches in SemOpenAlex for { <https://semopenalex.org/work/W2146144468> ?p ?o ?g. }
- W2146144468 endingPage "394" @default.
- W2146144468 startingPage "386" @default.
- W2146144468 abstract "Multi-modal data analysis techniques, such as the Parallel Independent Component Analysis (pICA), are essential in neuroscience, medical imaging and genetic studies. The pICA algorithm allows the simultaneous decomposition of up to two data modalities achieving better performance than separate ICA decompositions and enabling the discovery of links between modalities. However, advances in data acquisition techniques facilitate the collection of more than two data modalities from each subject. Examples of commonly measured modalities include genetic information, structural magnetic resonance imaging (MRI) and functional MRI. In order to take full advantage of the available data, this work extends the pICA approach to incorporate three modalities in one comprehensive analysis. Simulations demonstrate the three-way pICA performance in identifying pairwise links between modalities and estimating independent components which more closely resemble the true sources than components found by pICA or separate ICA analyses. In addition, the three-way pICA algorithm is applied to real experimental data obtained from a study that investigate genetic effects on alcohol dependence. Considered data modalities include functional MRI (contrast images during alcohol exposure paradigm), gray matter concentration images from structural MRI and genetic single nucleotide polymorphism (SNP). The three-way pICA approach identified links between a SNP component (pointing to brain function and mental disorder associated genes, including BDNF, GRIN2B and NRG1), a functional component related to increased activation in the precuneus area, and a gray matter component comprising part of the default mode network and the caudate. Although such findings need further verification, the simulation and in-vivo results validate the three-way pICA algorithm presented here as a useful tool in biomedical data fusion applications." @default.
- W2146144468 created "2016-06-24" @default.
- W2146144468 creator A5002950240 @default.
- W2146144468 creator A5032850756 @default.
- W2146144468 creator A5038635573 @default.
- W2146144468 creator A5064837055 @default.
- W2146144468 creator A5066292657 @default.
- W2146144468 creator A5080485825 @default.
- W2146144468 date "2014-09-01" @default.
- W2146144468 modified "2023-10-03" @default.
- W2146144468 title "A three-way parallel ICA approach to analyze links among genetics, brain structure and brain function" @default.
- W2146144468 cites W1667992367 @default.
- W2146144468 cites W1971794028 @default.
- W2146144468 cites W1988922574 @default.
- W2146144468 cites W1994029270 @default.
- W2146144468 cites W2003449088 @default.
- W2146144468 cites W2006096283 @default.
- W2146144468 cites W2021645796 @default.
- W2146144468 cites W2023095826 @default.
- W2146144468 cites W2023673693 @default.
- W2146144468 cites W2028260332 @default.
- W2146144468 cites W2033128599 @default.
- W2146144468 cites W2054141282 @default.
- W2146144468 cites W2065131965 @default.
- W2146144468 cites W2078604986 @default.
- W2146144468 cites W2088403668 @default.
- W2146144468 cites W2088714452 @default.
- W2146144468 cites W2091505015 @default.
- W2146144468 cites W2093972428 @default.
- W2146144468 cites W2098345971 @default.
- W2146144468 cites W2099741732 @default.
- W2146144468 cites W2100235303 @default.
- W2146144468 cites W2108384452 @default.
- W2146144468 cites W2113173487 @default.
- W2146144468 cites W2113506774 @default.
- W2146144468 cites W2114614491 @default.
- W2146144468 cites W2117038895 @default.
- W2146144468 cites W2117590912 @default.
- W2146144468 cites W2131270585 @default.
- W2146144468 cites W2132168166 @default.
- W2146144468 cites W2133502275 @default.
- W2146144468 cites W2133946066 @default.
- W2146144468 cites W2136435696 @default.
- W2146144468 cites W2141279969 @default.
- W2146144468 cites W2145832750 @default.
- W2146144468 cites W2146267270 @default.
- W2146144468 cites W2154809365 @default.
- W2146144468 cites W2154942988 @default.
- W2146144468 cites W2157752701 @default.
- W2146144468 cites W2158611196 @default.
- W2146144468 cites W2159473598 @default.
- W2146144468 cites W2160415695 @default.
- W2146144468 cites W2161633633 @default.
- W2146144468 cites W2162615138 @default.
- W2146144468 cites W2171251197 @default.
- W2146144468 cites W4230920194 @default.
- W2146144468 cites W4243810761 @default.
- W2146144468 doi "https://doi.org/10.1016/j.neuroimage.2014.04.060" @default.
- W2146144468 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4141686" @default.
- W2146144468 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24795156" @default.
- W2146144468 hasPublicationYear "2014" @default.
- W2146144468 type Work @default.
- W2146144468 sameAs 2146144468 @default.
- W2146144468 citedByCount "46" @default.
- W2146144468 countsByYear W21461444682014 @default.
- W2146144468 countsByYear W21461444682015 @default.
- W2146144468 countsByYear W21461444682016 @default.
- W2146144468 countsByYear W21461444682017 @default.
- W2146144468 countsByYear W21461444682018 @default.
- W2146144468 countsByYear W21461444682019 @default.
- W2146144468 countsByYear W21461444682020 @default.
- W2146144468 countsByYear W21461444682021 @default.
- W2146144468 countsByYear W21461444682022 @default.
- W2146144468 countsByYear W21461444682023 @default.
- W2146144468 crossrefType "journal-article" @default.
- W2146144468 hasAuthorship W2146144468A5002950240 @default.
- W2146144468 hasAuthorship W2146144468A5032850756 @default.
- W2146144468 hasAuthorship W2146144468A5038635573 @default.
- W2146144468 hasAuthorship W2146144468A5064837055 @default.
- W2146144468 hasAuthorship W2146144468A5066292657 @default.
- W2146144468 hasAuthorship W2146144468A5080485825 @default.
- W2146144468 hasBestOaLocation W21461444682 @default.
- W2146144468 hasConcept C119857082 @default.
- W2146144468 hasConcept C141516989 @default.
- W2146144468 hasConcept C144024400 @default.
- W2146144468 hasConcept C153180895 @default.
- W2146144468 hasConcept C154945302 @default.
- W2146144468 hasConcept C15744967 @default.
- W2146144468 hasConcept C169760540 @default.
- W2146144468 hasConcept C169900460 @default.
- W2146144468 hasConcept C18183760 @default.
- W2146144468 hasConcept C2779903281 @default.
- W2146144468 hasConcept C36289849 @default.
- W2146144468 hasConcept C41008148 @default.
- W2146144468 hasConcept C51432778 @default.
- W2146144468 hasConcept C58693492 @default.
- W2146144468 hasConceptScore W2146144468C119857082 @default.
- W2146144468 hasConceptScore W2146144468C141516989 @default.