Matches in SemOpenAlex for { <https://semopenalex.org/work/W2146207877> ?p ?o ?g. }
- W2146207877 endingPage "3110" @default.
- W2146207877 startingPage "3095" @default.
- W2146207877 abstract "Abstract. Mesoscale numerical weather prediction (NWP) models are gaining more attention in providing high-resolution rainfall forecasts at the catchment scale for real-time flood forecasting. The model accuracy is however negatively affected by the spin-up effect and errors in the initial and lateral boundary conditions. Synoptic studies in the meteorological area have shown that the assimilation of operational observations, especially the weather radar data, can improve the reliability of the rainfall forecasts from the NWP models. This study aims at investigating the potential of radar data assimilation in improving the NWP rainfall forecasts that have direct benefits for hydrological applications. The Weather Research and Forecasting (WRF) model is adopted to generate 10 km rainfall forecasts for a 24 h storm event in the Brue catchment (135.2 km2) located in southwest England. Radar reflectivity from the lowest scan elevation of a C-band weather radar is assimilated by using the three-dimensional variational (3D-Var) data-assimilation technique. Considering the unsatisfactory quality of radar data compared to the rain gauge observations, the radar data are assimilated in both the original form and an improved form based on a real-time correction ratio developed according to the rain gauge observations. Traditional meteorological observations including the surface and upper-air measurements of pressure, temperature, humidity and wind speed are also assimilated as a bench mark to better evaluate and test the potential of radar data assimilation. Four modes of data assimilation are thus carried out on different types/combinations of observations: (1) traditional meteorological data; (2) radar reflectivity; (3) corrected radar reflectivity; (4) a combination of the original reflectivity and meteorological data; and (5) a combination of the corrected reflectivity and meteorological data. The WRF rainfall forecasts before and after different modes of data assimilation are evaluated by examining the rainfall temporal variations and total amounts which have direct impacts on rainfall–runoff transformation in hydrological applications. It is found that by solely assimilating radar data, the improvement of rainfall forecasts are not as obvious as assimilating meteorological data; whereas the positive effect of radar data can be seen when combined with the traditional meteorological data, which leads to the best rainfall forecasts among the five modes. To further improve the effect of radar data assimilation, limitations of the radar correction ratio developed in this study are discussed and suggestions are made on more efficient utilisation of radar data in NWP data assimilation." @default.
- W2146207877 created "2016-06-24" @default.
- W2146207877 creator A5008643995 @default.
- W2146207877 creator A5051317424 @default.
- W2146207877 creator A5066067123 @default.
- W2146207877 date "2013-08-02" @default.
- W2146207877 modified "2023-10-02" @default.
- W2146207877 title "A study on WRF radar data assimilation for hydrological rainfall prediction" @default.
- W2146207877 cites W1673171690 @default.
- W2146207877 cites W1880433501 @default.
- W2146207877 cites W1965401677 @default.
- W2146207877 cites W1966487726 @default.
- W2146207877 cites W1966844167 @default.
- W2146207877 cites W1972578254 @default.
- W2146207877 cites W1973814485 @default.
- W2146207877 cites W1974419942 @default.
- W2146207877 cites W1977079916 @default.
- W2146207877 cites W1983395630 @default.
- W2146207877 cites W1989669046 @default.
- W2146207877 cites W1993512681 @default.
- W2146207877 cites W1995550501 @default.
- W2146207877 cites W2006757093 @default.
- W2146207877 cites W2016184960 @default.
- W2146207877 cites W2016318534 @default.
- W2146207877 cites W2022631575 @default.
- W2146207877 cites W2024110917 @default.
- W2146207877 cites W2027301072 @default.
- W2146207877 cites W2028979275 @default.
- W2146207877 cites W2029145733 @default.
- W2146207877 cites W2031264828 @default.
- W2146207877 cites W2042456683 @default.
- W2146207877 cites W2042797049 @default.
- W2146207877 cites W2043042698 @default.
- W2146207877 cites W2043929744 @default.
- W2146207877 cites W2052108550 @default.
- W2146207877 cites W2056021206 @default.
- W2146207877 cites W2058791393 @default.
- W2146207877 cites W2072338019 @default.
- W2146207877 cites W2083339292 @default.
- W2146207877 cites W2085975501 @default.
- W2146207877 cites W2093934825 @default.
- W2146207877 cites W2096701604 @default.
- W2146207877 cites W2100251801 @default.
- W2146207877 cites W2102885904 @default.
- W2146207877 cites W2104327364 @default.
- W2146207877 cites W2106064883 @default.
- W2146207877 cites W2115591590 @default.
- W2146207877 cites W2117671103 @default.
- W2146207877 cites W2118264819 @default.
- W2146207877 cites W2120641010 @default.
- W2146207877 cites W2128225313 @default.
- W2146207877 cites W2142794782 @default.
- W2146207877 cites W2153525715 @default.
- W2146207877 cites W2154287466 @default.
- W2146207877 cites W2172819965 @default.
- W2146207877 cites W2173447521 @default.
- W2146207877 cites W2174421029 @default.
- W2146207877 cites W2175190622 @default.
- W2146207877 cites W2177451271 @default.
- W2146207877 cites W2177827256 @default.
- W2146207877 cites W2179912439 @default.
- W2146207877 cites W2324837854 @default.
- W2146207877 cites W2513572844 @default.
- W2146207877 doi "https://doi.org/10.5194/hess-17-3095-2013" @default.
- W2146207877 hasPublicationYear "2013" @default.
- W2146207877 type Work @default.
- W2146207877 sameAs 2146207877 @default.
- W2146207877 citedByCount "36" @default.
- W2146207877 countsByYear W21462078772013 @default.
- W2146207877 countsByYear W21462078772014 @default.
- W2146207877 countsByYear W21462078772015 @default.
- W2146207877 countsByYear W21462078772016 @default.
- W2146207877 countsByYear W21462078772017 @default.
- W2146207877 countsByYear W21462078772018 @default.
- W2146207877 countsByYear W21462078772019 @default.
- W2146207877 countsByYear W21462078772020 @default.
- W2146207877 countsByYear W21462078772021 @default.
- W2146207877 countsByYear W21462078772022 @default.
- W2146207877 countsByYear W21462078772023 @default.
- W2146207877 crossrefType "journal-article" @default.
- W2146207877 hasAuthorship W2146207877A5008643995 @default.
- W2146207877 hasAuthorship W2146207877A5051317424 @default.
- W2146207877 hasAuthorship W2146207877A5066067123 @default.
- W2146207877 hasBestOaLocation W21462078771 @default.
- W2146207877 hasConcept C105306849 @default.
- W2146207877 hasConcept C107054158 @default.
- W2146207877 hasConcept C120961793 @default.
- W2146207877 hasConcept C127313418 @default.
- W2146207877 hasConcept C133204551 @default.
- W2146207877 hasConcept C140178040 @default.
- W2146207877 hasConcept C147947694 @default.
- W2146207877 hasConcept C153294291 @default.
- W2146207877 hasConcept C161067210 @default.
- W2146207877 hasConcept C166957645 @default.
- W2146207877 hasConcept C183195422 @default.
- W2146207877 hasConcept C205649164 @default.
- W2146207877 hasConcept C24552861 @default.
- W2146207877 hasConcept C39432304 @default.