Matches in SemOpenAlex for { <https://semopenalex.org/work/W2146246664> ?p ?o ?g. }
- W2146246664 abstract "ABSTRACT The growth of the soil bacterium Pseudomonas putida KT2440 on glycerol as the sole carbon source is characterized by a prolonged lag phase, not observed with other carbon substrates. We examined the bacterial growth in glycerol cultures while monitoring the metabolic activity of individual cells. Fluorescence microscopy and flow cytometry, as well as the analysis of the temporal start of growth in single-cell cultures, revealed that adoption of a glycerol-metabolizing regime was not the result of a gradual change in the whole population but rather reflected a time-dependent bimodal switch between metabolically inactive (i.e., nongrowing) and fully active (i.e., growing) bacteria. A transcriptional Φ( glpD-gfp ) fusion (a proxy of the glycerol-3-phosphate [G3P] dehydrogenase activity) linked the macroscopic phenotype to the expression of the glp genes. Either deleting glpR (encoding the G3P-responsive transcriptional repressor that controls the expression of the glpFKRD gene cluster) or altering G3P formation (by overexpressing glpK , encoding glycerol kinase) abolished the bimodal glpD expression. These manipulations eliminated the stochastic growth start by shortening the otherwise long lag phase. Provision of glpR in trans restored the phenotypes lost in the ΔglpR mutant. The prolonged nongrowth regime of P. putida on glycerol could thus be traced to the regulatory device controlling the transcription of the glp genes. Since the physiological agonist of GlpR is G3P, the arrangement of metabolic and regulatory components at this checkpoint merges a positive feedback loop with a nonlinear transcriptional response, a layout fostering the observed time-dependent shift between two alternative physiological states. IMPORTANCE Phenotypic variation is a widespread attribute of prokaryotes that leads, inter alia , to the emergence of persistent bacteria, i.e., live but nongrowing members within a genetically clonal population. Persistence allows a fraction of cells to avoid the killing caused by conditions or agents that destroy most growing bacteria (e.g., some antibiotics). Known molecular mechanisms underlying the phenomenon include genetic changes, epigenetic variations, and feedback-based multistability. We show that a prolonged nongrowing state of the bacterial population can be brought about by a distinct regulatory architecture of metabolic genes when cells face specific nutrients (e.g., glycerol). Pseudomonas putida may have adopted the resulting carbon source-dependent metabolic bet hedging as an advantageous trait for exploring new chemical and nutritional landscapes. Defeating such naturally occurring adaptive features of environmental bacteria is instrumental in improving the performance of these microorganisms as whole-cell catalysts in a bioreactor setup." @default.
- W2146246664 created "2016-06-24" @default.
- W2146246664 creator A5021627857 @default.
- W2146246664 creator A5053274991 @default.
- W2146246664 creator A5077522931 @default.
- W2146246664 creator A5088742946 @default.
- W2146246664 creator A5090164861 @default.
- W2146246664 date "2015-05-01" @default.
- W2146246664 modified "2023-10-17" @default.
- W2146246664 title "The Glycerol-Dependent Metabolic Persistence of Pseudomonas putida KT2440 Reflects the Regulatory Logic of the GlpR Repressor" @default.
- W2146246664 cites W1497101056 @default.
- W2146246664 cites W1527577753 @default.
- W2146246664 cites W1546157935 @default.
- W2146246664 cites W1574719834 @default.
- W2146246664 cites W1603893961 @default.
- W2146246664 cites W1822017433 @default.
- W2146246664 cites W1824614244 @default.
- W2146246664 cites W1871170317 @default.
- W2146246664 cites W1901280877 @default.
- W2146246664 cites W1906978066 @default.
- W2146246664 cites W1949378404 @default.
- W2146246664 cites W1969100331 @default.
- W2146246664 cites W1972918463 @default.
- W2146246664 cites W1978182054 @default.
- W2146246664 cites W1981692558 @default.
- W2146246664 cites W1982505378 @default.
- W2146246664 cites W1990421064 @default.
- W2146246664 cites W1995687461 @default.
- W2146246664 cites W1997119027 @default.
- W2146246664 cites W1998369603 @default.
- W2146246664 cites W2001357509 @default.
- W2146246664 cites W2005745339 @default.
- W2146246664 cites W2012024872 @default.
- W2146246664 cites W2012757382 @default.
- W2146246664 cites W2018925223 @default.
- W2146246664 cites W2025459454 @default.
- W2146246664 cites W2027179841 @default.
- W2146246664 cites W2028054553 @default.
- W2146246664 cites W2032759622 @default.
- W2146246664 cites W2036247065 @default.
- W2146246664 cites W2036559697 @default.
- W2146246664 cites W2038727507 @default.
- W2146246664 cites W2050499271 @default.
- W2146246664 cites W2054920102 @default.
- W2146246664 cites W2055679848 @default.
- W2146246664 cites W2057225682 @default.
- W2146246664 cites W2060520177 @default.
- W2146246664 cites W2061328563 @default.
- W2146246664 cites W2061832011 @default.
- W2146246664 cites W2064492983 @default.
- W2146246664 cites W2065258371 @default.
- W2146246664 cites W2073222016 @default.
- W2146246664 cites W2074692830 @default.
- W2146246664 cites W2074771787 @default.
- W2146246664 cites W2081114359 @default.
- W2146246664 cites W2083886906 @default.
- W2146246664 cites W2091198609 @default.
- W2146246664 cites W2099809402 @default.
- W2146246664 cites W2103018940 @default.
- W2146246664 cites W2103072970 @default.
- W2146246664 cites W2103154040 @default.
- W2146246664 cites W2106343559 @default.
- W2146246664 cites W2109242001 @default.
- W2146246664 cites W2113529870 @default.
- W2146246664 cites W2116739014 @default.
- W2146246664 cites W2116862113 @default.
- W2146246664 cites W2117597548 @default.
- W2146246664 cites W2118932595 @default.
- W2146246664 cites W2121901998 @default.
- W2146246664 cites W2123425265 @default.
- W2146246664 cites W2124980889 @default.
- W2146246664 cites W2128051571 @default.
- W2146246664 cites W2132602091 @default.
- W2146246664 cites W2133335412 @default.
- W2146246664 cites W2139149599 @default.
- W2146246664 cites W2143842076 @default.
- W2146246664 cites W2146950229 @default.
- W2146246664 cites W2148323109 @default.
- W2146246664 cites W2151574853 @default.
- W2146246664 cites W2154057231 @default.
- W2146246664 cites W2154729158 @default.
- W2146246664 cites W2155695415 @default.
- W2146246664 cites W2161251399 @default.
- W2146246664 cites W2164277408 @default.
- W2146246664 cites W2164644232 @default.
- W2146246664 cites W2166756426 @default.
- W2146246664 cites W2171280873 @default.
- W2146246664 cites W2177399548 @default.
- W2146246664 cites W2324648290 @default.
- W2146246664 cites W2435961502 @default.
- W2146246664 cites W26656423 @default.
- W2146246664 cites W4213353716 @default.
- W2146246664 cites W4230375506 @default.
- W2146246664 doi "https://doi.org/10.1128/mbio.00340-15" @default.
- W2146246664 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4453509" @default.
- W2146246664 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25827416" @default.
- W2146246664 hasPublicationYear "2015" @default.
- W2146246664 type Work @default.
- W2146246664 sameAs 2146246664 @default.
- W2146246664 citedByCount "60" @default.