Matches in SemOpenAlex for { <https://semopenalex.org/work/W2146249618> ?p ?o ?g. }
- W2146249618 endingPage "415" @default.
- W2146249618 startingPage "399" @default.
- W2146249618 abstract "Latent trait models have long been used in the social science literature for studying variables that can only be measured indirectly through multiple items. However, such models are also very useful in accounting for correlation in multivariate and longitudinal data, particularly when outcomes have mixed measurement scales. Bayesian methods implemented with Markov chain Monte Carlo provide a flexible framework for routine fitting of a broad class of latent variable (LV) models, including very general structural equation models. However, in considering LV models, a number of challenging issues arise, including identifiability, confounding between the mean and variance, uncertainty in different aspects of the model, and difficulty in computation. Motivated by the problem of modelling multidimensional longitudinal data, this article reviews the recent literature, provides some recommendations and highlights areas in need of additional research, focusing on methods for model uncertainty." @default.
- W2146249618 created "2016-06-24" @default.
- W2146249618 creator A5002768909 @default.
- W2146249618 date "2007-10-01" @default.
- W2146249618 modified "2023-10-18" @default.
- W2146249618 title "Bayesian methods for latent trait modelling of longitudinal data" @default.
- W2146249618 cites W1536497620 @default.
- W2146249618 cites W1965300254 @default.
- W2146249618 cites W1966299112 @default.
- W2146249618 cites W1967456918 @default.
- W2146249618 cites W1969502906 @default.
- W2146249618 cites W1974134238 @default.
- W2146249618 cites W1980782084 @default.
- W2146249618 cites W1982636789 @default.
- W2146249618 cites W1983203323 @default.
- W2146249618 cites W1988435012 @default.
- W2146249618 cites W1999291824 @default.
- W2146249618 cites W2001272401 @default.
- W2146249618 cites W2002185523 @default.
- W2146249618 cites W2006336297 @default.
- W2146249618 cites W2008123800 @default.
- W2146249618 cites W2013164703 @default.
- W2146249618 cites W2025991284 @default.
- W2146249618 cites W2029939487 @default.
- W2146249618 cites W2030953793 @default.
- W2146249618 cites W2038885294 @default.
- W2146249618 cites W2050207700 @default.
- W2146249618 cites W2055256045 @default.
- W2146249618 cites W2062329186 @default.
- W2146249618 cites W2064167155 @default.
- W2146249618 cites W2067001895 @default.
- W2146249618 cites W2067040543 @default.
- W2146249618 cites W2067948254 @default.
- W2146249618 cites W2068127700 @default.
- W2146249618 cites W2068535411 @default.
- W2146249618 cites W2069429561 @default.
- W2146249618 cites W2079037210 @default.
- W2146249618 cites W2079953459 @default.
- W2146249618 cites W2081074266 @default.
- W2146249618 cites W2082246284 @default.
- W2146249618 cites W2083273808 @default.
- W2146249618 cites W2086322738 @default.
- W2146249618 cites W2089773781 @default.
- W2146249618 cites W2091031656 @default.
- W2146249618 cites W2094882813 @default.
- W2146249618 cites W2102349058 @default.
- W2146249618 cites W2106706098 @default.
- W2146249618 cites W2108306139 @default.
- W2146249618 cites W2115167172 @default.
- W2146249618 cites W2116577493 @default.
- W2146249618 cites W2116843551 @default.
- W2146249618 cites W2118634677 @default.
- W2146249618 cites W2122467621 @default.
- W2146249618 cites W2130783497 @default.
- W2146249618 cites W2131110515 @default.
- W2146249618 cites W2131531229 @default.
- W2146249618 cites W2137450125 @default.
- W2146249618 cites W2137576793 @default.
- W2146249618 cites W2138507393 @default.
- W2146249618 cites W2138749749 @default.
- W2146249618 cites W2150983145 @default.
- W2146249618 cites W2160257459 @default.
- W2146249618 cites W2163229341 @default.
- W2146249618 cites W2166209173 @default.
- W2146249618 cites W4298091299 @default.
- W2146249618 doi "https://doi.org/10.1177/0962280206075309" @default.
- W2146249618 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17656454" @default.
- W2146249618 hasPublicationYear "2007" @default.
- W2146249618 type Work @default.
- W2146249618 sameAs 2146249618 @default.
- W2146249618 citedByCount "30" @default.
- W2146249618 countsByYear W21462496182012 @default.
- W2146249618 countsByYear W21462496182013 @default.
- W2146249618 countsByYear W21462496182014 @default.
- W2146249618 countsByYear W21462496182015 @default.
- W2146249618 countsByYear W21462496182016 @default.
- W2146249618 countsByYear W21462496182017 @default.
- W2146249618 countsByYear W21462496182018 @default.
- W2146249618 countsByYear W21462496182019 @default.
- W2146249618 countsByYear W21462496182020 @default.
- W2146249618 countsByYear W21462496182023 @default.
- W2146249618 crossrefType "journal-article" @default.
- W2146249618 hasAuthorship W2146249618A5002768909 @default.
- W2146249618 hasConcept C105795698 @default.
- W2146249618 hasConcept C107673813 @default.
- W2146249618 hasConcept C111350023 @default.
- W2146249618 hasConcept C119857082 @default.
- W2146249618 hasConcept C121955636 @default.
- W2146249618 hasConcept C122770356 @default.
- W2146249618 hasConcept C124101348 @default.
- W2146249618 hasConcept C144133560 @default.
- W2146249618 hasConcept C149782125 @default.
- W2146249618 hasConcept C154945302 @default.
- W2146249618 hasConcept C161584116 @default.
- W2146249618 hasConcept C196083921 @default.
- W2146249618 hasConcept C3020672099 @default.
- W2146249618 hasConcept C33923547 @default.
- W2146249618 hasConcept C41008148 @default.