Matches in SemOpenAlex for { <https://semopenalex.org/work/W2146338426> ?p ?o ?g. }
- W2146338426 endingPage "303" @default.
- W2146338426 startingPage "292" @default.
- W2146338426 abstract "Sentiment analysis (also known as opinion mining) is an active research area in natural language processing. It aims at identifying, extracting and organizing sentiments from user generated texts in social networks, blogs or product reviews. A lot of studies in literature exploit machine learning approaches to solve sentiment analysis tasks from different perspectives in the past 15 years. Since the performance of a machine learner heavily depends on the choices of data representation, many studies devote to building powerful feature extractor with domain expert and careful engineering. Recently, deep learning approaches emerge as powerful computational models that discover intricate semantic representations of texts automatically from data without feature engineering. These approaches have improved the state‐of‐the‐art in many sentiment analysis tasks including sentiment classification of sentences/documents, sentiment extraction and sentiment lexicon learning. In this paper, we provide an overview of the successful deep learning approaches for sentiment analysis tasks, lay out the remaining challenges and provide some suggestions to address these challenges. WIREs Data Mining Knowl Discov 2015, 5:292–303. doi: 10.1002/widm.1171 This article is categorized under: Algorithmic Development > Text Mining Technologies > Classification Technologies > Machine Learning" @default.
- W2146338426 created "2016-06-24" @default.
- W2146338426 creator A5017671620 @default.
- W2146338426 creator A5052842216 @default.
- W2146338426 creator A5063089557 @default.
- W2146338426 date "2015-10-23" @default.
- W2146338426 modified "2023-10-16" @default.
- W2146338426 title "Deep learning for sentiment analysis: successful approaches and future challenges" @default.
- W2146338426 cites W1010415138 @default.
- W2146338426 cites W1816079941 @default.
- W2146338426 cites W1832693441 @default.
- W2146338426 cites W1964613733 @default.
- W2146338426 cites W1981617416 @default.
- W2146338426 cites W1984052055 @default.
- W2146338426 cites W1987425720 @default.
- W2146338426 cites W1990482343 @default.
- W2146338426 cites W2022204871 @default.
- W2146338426 cites W2025423507 @default.
- W2146338426 cites W2031998113 @default.
- W2146338426 cites W2039543580 @default.
- W2146338426 cites W2049434052 @default.
- W2146338426 cites W2064580901 @default.
- W2146338426 cites W2067562553 @default.
- W2146338426 cites W2077587655 @default.
- W2146338426 cites W2084046180 @default.
- W2146338426 cites W2089173648 @default.
- W2146338426 cites W2091812280 @default.
- W2146338426 cites W2099104810 @default.
- W2146338426 cites W2100495367 @default.
- W2146338426 cites W2102134623 @default.
- W2146338426 cites W2112422413 @default.
- W2146338426 cites W2115242108 @default.
- W2146338426 cites W2117130368 @default.
- W2146338426 cites W2119408773 @default.
- W2146338426 cites W2123415724 @default.
- W2146338426 cites W2129011250 @default.
- W2146338426 cites W2132339004 @default.
- W2146338426 cites W2136140395 @default.
- W2146338426 cites W2137807925 @default.
- W2146338426 cites W2144012961 @default.
- W2146338426 cites W2147152072 @default.
- W2146338426 cites W2155328222 @default.
- W2146338426 cites W2159457224 @default.
- W2146338426 cites W2160660844 @default.
- W2146338426 cites W2163922914 @default.
- W2146338426 cites W2166706824 @default.
- W2146338426 cites W2199803028 @default.
- W2146338426 cites W2250539671 @default.
- W2146338426 cites W2250553586 @default.
- W2146338426 cites W2250767751 @default.
- W2146338426 cites W2250879510 @default.
- W2146338426 cites W2250966211 @default.
- W2146338426 cites W2251124635 @default.
- W2146338426 cites W2251292973 @default.
- W2146338426 cites W2251771443 @default.
- W2146338426 cites W2252007242 @default.
- W2146338426 cites W2252024663 @default.
- W2146338426 cites W2296487598 @default.
- W2146338426 cites W2882319491 @default.
- W2146338426 cites W2919115771 @default.
- W2146338426 cites W2963355447 @default.
- W2146338426 cites W2963921497 @default.
- W2146338426 cites W4205184193 @default.
- W2146338426 cites W4211120398 @default.
- W2146338426 cites W4211186029 @default.
- W2146338426 doi "https://doi.org/10.1002/widm.1171" @default.
- W2146338426 hasPublicationYear "2015" @default.
- W2146338426 type Work @default.
- W2146338426 sameAs 2146338426 @default.
- W2146338426 citedByCount "111" @default.
- W2146338426 countsByYear W21463384262016 @default.
- W2146338426 countsByYear W21463384262017 @default.
- W2146338426 countsByYear W21463384262018 @default.
- W2146338426 countsByYear W21463384262019 @default.
- W2146338426 countsByYear W21463384262020 @default.
- W2146338426 countsByYear W21463384262021 @default.
- W2146338426 countsByYear W21463384262022 @default.
- W2146338426 countsByYear W21463384262023 @default.
- W2146338426 crossrefType "journal-article" @default.
- W2146338426 hasAuthorship W2146338426A5017671620 @default.
- W2146338426 hasAuthorship W2146338426A5052842216 @default.
- W2146338426 hasAuthorship W2146338426A5063089557 @default.
- W2146338426 hasConcept C108583219 @default.
- W2146338426 hasConcept C119857082 @default.
- W2146338426 hasConcept C134306372 @default.
- W2146338426 hasConcept C138885662 @default.
- W2146338426 hasConcept C154945302 @default.
- W2146338426 hasConcept C165696696 @default.
- W2146338426 hasConcept C17744445 @default.
- W2146338426 hasConcept C199539241 @default.
- W2146338426 hasConcept C204321447 @default.
- W2146338426 hasConcept C2522767166 @default.
- W2146338426 hasConcept C2776359362 @default.
- W2146338426 hasConcept C2776401178 @default.
- W2146338426 hasConcept C2778121359 @default.
- W2146338426 hasConcept C2778827112 @default.
- W2146338426 hasConcept C33923547 @default.
- W2146338426 hasConcept C36503486 @default.