Matches in SemOpenAlex for { <https://semopenalex.org/work/W2146339718> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2146339718 abstract "We recently proposed the Edgewise Greedy Algorithm (EGA) for learning a decomposable Markov network of treewidth k approximating a given joint probability distribution of n discrete random variables. The main ingredient of our algorithm is the stepwise forward selection algorithm (FSA) due to Deshpande, Garofalakis, and Jordan. EGA is an efficient alternative to the algorithm (HGA) by Malvestuto, which constructs a model of treewidth k by selecting hyperedges of order k+1. In this paper, we present results of empirical studies that compare HGA, EGA and FSA-K which is a straightforward application of FSA, in terms of approximation accuracy (measured by KL-divergence) and computational time. Our experiments show that (1) on the average, all three algorithms produce similar approximation accuracy; (2) EGA produces comparable or better approximation accuracy and is the most efficient among the three. (3) Malvestuto's algorithm is the least efficient one, although it tends to produce better accuracy when the treewidth is bigger than half of the number of random variabls; (4) EGA coupled with local search has the best approximation accuracy overall, at a cost of increased computation time by 50 percent." @default.
- W2146339718 created "2016-06-24" @default.
- W2146339718 creator A5003836570 @default.
- W2146339718 creator A5046154774 @default.
- W2146339718 creator A5056825800 @default.
- W2146339718 creator A5065545478 @default.
- W2146339718 creator A5079580976 @default.
- W2146339718 creator A5089232057 @default.
- W2146339718 date "2008-01-01" @default.
- W2146339718 modified "2023-10-18" @default.
- W2146339718 title "Empirical Comparison of Greedy Strategies for Learning Markov Networks of Treewidth k" @default.
- W2146339718 cites W1546874952 @default.
- W2146339718 cites W1558863764 @default.
- W2146339718 cites W1575566281 @default.
- W2146339718 cites W1669131436 @default.
- W2146339718 cites W2036945895 @default.
- W2146339718 cites W2038483783 @default.
- W2146339718 cites W2054358802 @default.
- W2146339718 cites W2081414924 @default.
- W2146339718 cites W2087083200 @default.
- W2146339718 cites W2095067466 @default.
- W2146339718 cites W2113280143 @default.
- W2146339718 cites W2113637154 @default.
- W2146339718 cites W2134267347 @default.
- W2146339718 cites W2142241599 @default.
- W2146339718 cites W2163166770 @default.
- W2146339718 cites W2917055535 @default.
- W2146339718 doi "https://doi.org/10.1109/icmla.2008.27" @default.
- W2146339718 hasPublicationYear "2008" @default.
- W2146339718 type Work @default.
- W2146339718 sameAs 2146339718 @default.
- W2146339718 citedByCount "0" @default.
- W2146339718 crossrefType "proceedings-article" @default.
- W2146339718 hasAuthorship W2146339718A5003836570 @default.
- W2146339718 hasAuthorship W2146339718A5046154774 @default.
- W2146339718 hasAuthorship W2146339718A5056825800 @default.
- W2146339718 hasAuthorship W2146339718A5065545478 @default.
- W2146339718 hasAuthorship W2146339718A5079580976 @default.
- W2146339718 hasAuthorship W2146339718A5089232057 @default.
- W2146339718 hasConcept C105795698 @default.
- W2146339718 hasConcept C11413529 @default.
- W2146339718 hasConcept C114614502 @default.
- W2146339718 hasConcept C119857082 @default.
- W2146339718 hasConcept C126255220 @default.
- W2146339718 hasConcept C132525143 @default.
- W2146339718 hasConcept C132569581 @default.
- W2146339718 hasConcept C138885662 @default.
- W2146339718 hasConcept C148764684 @default.
- W2146339718 hasConcept C159886148 @default.
- W2146339718 hasConcept C203776342 @default.
- W2146339718 hasConcept C207390915 @default.
- W2146339718 hasConcept C33923547 @default.
- W2146339718 hasConcept C41008148 @default.
- W2146339718 hasConcept C41895202 @default.
- W2146339718 hasConcept C43517604 @default.
- W2146339718 hasConcept C45374587 @default.
- W2146339718 hasConcept C51823790 @default.
- W2146339718 hasConcept C98763669 @default.
- W2146339718 hasConceptScore W2146339718C105795698 @default.
- W2146339718 hasConceptScore W2146339718C11413529 @default.
- W2146339718 hasConceptScore W2146339718C114614502 @default.
- W2146339718 hasConceptScore W2146339718C119857082 @default.
- W2146339718 hasConceptScore W2146339718C126255220 @default.
- W2146339718 hasConceptScore W2146339718C132525143 @default.
- W2146339718 hasConceptScore W2146339718C132569581 @default.
- W2146339718 hasConceptScore W2146339718C138885662 @default.
- W2146339718 hasConceptScore W2146339718C148764684 @default.
- W2146339718 hasConceptScore W2146339718C159886148 @default.
- W2146339718 hasConceptScore W2146339718C203776342 @default.
- W2146339718 hasConceptScore W2146339718C207390915 @default.
- W2146339718 hasConceptScore W2146339718C33923547 @default.
- W2146339718 hasConceptScore W2146339718C41008148 @default.
- W2146339718 hasConceptScore W2146339718C41895202 @default.
- W2146339718 hasConceptScore W2146339718C43517604 @default.
- W2146339718 hasConceptScore W2146339718C45374587 @default.
- W2146339718 hasConceptScore W2146339718C51823790 @default.
- W2146339718 hasConceptScore W2146339718C98763669 @default.
- W2146339718 hasLocation W21463397181 @default.
- W2146339718 hasOpenAccess W2146339718 @default.
- W2146339718 hasPrimaryLocation W21463397181 @default.
- W2146339718 hasRelatedWork W2014257304 @default.
- W2146339718 hasRelatedWork W2022287010 @default.
- W2146339718 hasRelatedWork W2083495568 @default.
- W2146339718 hasRelatedWork W2128702080 @default.
- W2146339718 hasRelatedWork W2160448643 @default.
- W2146339718 hasRelatedWork W2382889302 @default.
- W2146339718 hasRelatedWork W2385313307 @default.
- W2146339718 hasRelatedWork W2953093056 @default.
- W2146339718 hasRelatedWork W3171561879 @default.
- W2146339718 hasRelatedWork W3198596521 @default.
- W2146339718 isParatext "false" @default.
- W2146339718 isRetracted "false" @default.
- W2146339718 magId "2146339718" @default.
- W2146339718 workType "article" @default.