Matches in SemOpenAlex for { <https://semopenalex.org/work/W2146560763> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2146560763 endingPage "5042" @default.
- W2146560763 startingPage "4983" @default.
- W2146560763 abstract "Let <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper E> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding=application/x-tex>E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=k> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=application/x-tex>k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-local profinite <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=application/x-tex>G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Galois extension of an <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper E Subscript normal infinity> <mml:semantics> <mml:msub> <mml:mi>E</mml:mi> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> </mml:msub> <mml:annotation encoding=application/x-tex>E_infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-ring spectrum <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=application/x-tex>A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (in the sense of Rognes). We show that <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper E> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding=application/x-tex>E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> may be regarded as producing a discrete <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=application/x-tex>G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-spectrum. Also, we prove that if <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper E> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding=application/x-tex>E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a profaithful <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=k> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=application/x-tex>k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-local profinite extension which satisfies certain extra conditions, then the forward direction of Rognes’s Galois correspondence extends to the profinite setting. We show that the function spectrum <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper F Subscript upper A Baseline left-parenthesis left-parenthesis upper E Superscript h upper H Baseline right-parenthesis Subscript k Baseline comma left-parenthesis upper E Superscript h upper K Baseline right-parenthesis Subscript k Baseline right-parenthesis> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>F</mml:mi> <mml:mi>A</mml:mi> </mml:msub> <mml:mo stretchy=false>(</mml:mo> <mml:mo stretchy=false>(</mml:mo> <mml:msup> <mml:mi>E</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>h</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> </mml:msup> <mml:msub> <mml:mo stretchy=false>)</mml:mo> <mml:mi>k</mml:mi> </mml:msub> <mml:mo>,</mml:mo> <mml:mo stretchy=false>(</mml:mo> <mml:msup> <mml:mi>E</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>h</mml:mi> <mml:mi>K</mml:mi> </mml:mrow> </mml:msup> <mml:msub> <mml:mo stretchy=false>)</mml:mo> <mml:mi>k</mml:mi> </mml:msub> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>F_A((E^{hH})_k, (E^{hK})_k)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is equivalent to the localized homotopy fixed point spectrum <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-parenthesis left-parenthesis upper E left-bracket left-bracket upper G slash upper H right-bracket right-bracket right-parenthesis Superscript h upper K Baseline right-parenthesis Subscript k> <mml:semantics> <mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mo stretchy=false>(</mml:mo> <mml:mi>E</mml:mi> <mml:mo stretchy=false>[</mml:mo> <mml:mo stretchy=false>[</mml:mo> <mml:mi>G</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>H</mml:mi> <mml:mo stretchy=false>]</mml:mo> <mml:mo stretchy=false>]</mml:mo> <mml:msup> <mml:mo stretchy=false>)</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>h</mml:mi> <mml:mi>K</mml:mi> </mml:mrow> </mml:msup> <mml:msub> <mml:mo stretchy=false>)</mml:mo> <mml:mi>k</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=application/x-tex>((E[[G/H]])^{hK})_k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper H> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding=application/x-tex>H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper K> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=application/x-tex>K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are closed subgroups of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=application/x-tex>G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Applications to Morava <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper E> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding=application/x-tex>E</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-theory are given, including showing that the homotopy fixed points defined by Devinatz and Hopkins for closed subgroups of the extended Morava stabilizer group agree with those defined with respect to a continuous action in terms of the derived functor of fixed points." @default.
- W2146560763 created "2016-06-24" @default.
- W2146560763 creator A5021736173 @default.
- W2146560763 creator A5083448458 @default.
- W2146560763 date "2010-04-14" @default.
- W2146560763 modified "2023-10-13" @default.
- W2146560763 title "The homotopy fixed point spectra of profinite Galois extensions" @default.
- W2146560763 cites W1479744729 @default.
- W2146560763 cites W1514711709 @default.
- W2146560763 cites W1577035638 @default.
- W2146560763 cites W1583122470 @default.
- W2146560763 cites W1681542607 @default.
- W2146560763 cites W1997683636 @default.
- W2146560763 cites W1999142206 @default.
- W2146560763 cites W1999921212 @default.
- W2146560763 cites W2004650833 @default.
- W2146560763 cites W2015046682 @default.
- W2146560763 cites W2022479123 @default.
- W2146560763 cites W2028698043 @default.
- W2146560763 cites W2028824251 @default.
- W2146560763 cites W2060555613 @default.
- W2146560763 cites W2073211605 @default.
- W2146560763 cites W2073413525 @default.
- W2146560763 cites W2079500909 @default.
- W2146560763 cites W2086997195 @default.
- W2146560763 cites W2097797214 @default.
- W2146560763 cites W2104457967 @default.
- W2146560763 cites W2111994170 @default.
- W2146560763 cites W2130762722 @default.
- W2146560763 cites W2136058159 @default.
- W2146560763 cites W2148393217 @default.
- W2146560763 cites W3037999612 @default.
- W2146560763 cites W3100603289 @default.
- W2146560763 cites W33762173 @default.
- W2146560763 cites W4210584581 @default.
- W2146560763 cites W4235399510 @default.
- W2146560763 cites W4240542376 @default.
- W2146560763 cites W4242109713 @default.
- W2146560763 cites W4253896101 @default.
- W2146560763 cites W4253905711 @default.
- W2146560763 cites W4255662172 @default.
- W2146560763 cites W87338017 @default.
- W2146560763 doi "https://doi.org/10.1090/s0002-9947-10-05154-8" @default.
- W2146560763 hasPublicationYear "2010" @default.
- W2146560763 type Work @default.
- W2146560763 sameAs 2146560763 @default.
- W2146560763 citedByCount "30" @default.
- W2146560763 countsByYear W21465607632012 @default.
- W2146560763 countsByYear W21465607632013 @default.
- W2146560763 countsByYear W21465607632014 @default.
- W2146560763 countsByYear W21465607632016 @default.
- W2146560763 countsByYear W21465607632017 @default.
- W2146560763 countsByYear W21465607632018 @default.
- W2146560763 countsByYear W21465607632020 @default.
- W2146560763 countsByYear W21465607632021 @default.
- W2146560763 countsByYear W21465607632022 @default.
- W2146560763 crossrefType "journal-article" @default.
- W2146560763 hasAuthorship W2146560763A5021736173 @default.
- W2146560763 hasAuthorship W2146560763A5083448458 @default.
- W2146560763 hasBestOaLocation W21465607631 @default.
- W2146560763 hasConcept C11413529 @default.
- W2146560763 hasConcept C154945302 @default.
- W2146560763 hasConcept C2776321320 @default.
- W2146560763 hasConcept C33923547 @default.
- W2146560763 hasConcept C41008148 @default.
- W2146560763 hasConceptScore W2146560763C11413529 @default.
- W2146560763 hasConceptScore W2146560763C154945302 @default.
- W2146560763 hasConceptScore W2146560763C2776321320 @default.
- W2146560763 hasConceptScore W2146560763C33923547 @default.
- W2146560763 hasConceptScore W2146560763C41008148 @default.
- W2146560763 hasIssue "9" @default.
- W2146560763 hasLocation W21465607631 @default.
- W2146560763 hasLocation W21465607632 @default.
- W2146560763 hasLocation W21465607633 @default.
- W2146560763 hasOpenAccess W2146560763 @default.
- W2146560763 hasPrimaryLocation W21465607631 @default.
- W2146560763 hasRelatedWork W1529400504 @default.
- W2146560763 hasRelatedWork W1892467659 @default.
- W2146560763 hasRelatedWork W2143954309 @default.
- W2146560763 hasRelatedWork W2333703843 @default.
- W2146560763 hasRelatedWork W2334690443 @default.
- W2146560763 hasRelatedWork W2386767533 @default.
- W2146560763 hasRelatedWork W2394022102 @default.
- W2146560763 hasRelatedWork W2469937864 @default.
- W2146560763 hasRelatedWork W2808586768 @default.
- W2146560763 hasRelatedWork W2998403542 @default.
- W2146560763 hasVolume "362" @default.
- W2146560763 isParatext "false" @default.
- W2146560763 isRetracted "false" @default.
- W2146560763 magId "2146560763" @default.
- W2146560763 workType "article" @default.