Matches in SemOpenAlex for { <https://semopenalex.org/work/W2146573352> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2146573352 endingPage "5846" @default.
- W2146573352 startingPage "5843" @default.
- W2146573352 abstract "Very sensitive materials: Tellurium tetraazide, Te(N3)4, was prepared directly from TeF4 and Me3SiN3 as an extremely sensitive solid; azidation of a pentafluorotellurate(IV) anion gave the pentaazidotellurate(IV) anion. The crystal structure of the pyridinium salt [pyH][Te(N3)5] consists of [Te(N3)5]− units, considerably distorted from ideal square-pyramidal symmetry, that are linked through Te⋅⋅⋅N interactions (see picture). Apart from some early reports on the elusive and extremely labile tellurium nitride compounds TeN, Te3N4, and Te4N4, and the recently discovered [Te6N8(TeCl4)4],1 the only structurally characterized binary Te–N species is the salt [Te(N3)3][SbF6].2 The triazidotelluronium cation was obtained as an unexpected product during an attempted preparation of [Te2N]+. The chemistry of tellurium azides was initiated by Wiberg in the 1970s.3 Various examples of homoleptic azido transition and main-group metalates and nonmetalates are reported,4 but none of the chalcogen group. The groups of Wiberg and Passmore have indicated the possible existence of a highly explosive Te(N3)4 and warned of their potential danger. In pursuit of our recent efforts to explore the chemistry of covalent and ionic tellurium azides,5, 6 we describe here the synthesis, isolation, and properties of Te(N3)4 (1),7 [Me4N][Te(N3)5] (2 a) and [pyH][Te(N3)5] (2 b), the latter containing a rare pentacoordinated polyazido anion, the only other example being the [Fe(N3)5]2− ion.8 In an attempt to stabilize the tetraazide 1, and to gain products more easily characterizable, an effort was made to react a pyridine⋅TeF4 adduct with azide. Such TeF4 adducts are reported, but except for elemental analysis, no analytical information is available.11 In order to confirm that compounds of the proposed form [L⋅TeF3][TeF5] (L=Me3N, pyridine etc.) were prepared,12 further analytical information was desirable. In the course of the preparation of such a proposed pyridine⋅TeF4 adduct, the results of the crystal-structure determination unexpectedly revealed a complex mixture of pyridinium pentafluorotellurate(IV) and dimeric units of TeF4 solvated by pyridine.13 Since crystals of 2 a grown from the reaction solution tend to deliquesce very rapidly, crystallization was attempted from solutions of the mixture of pyridine with TeF4 and Me3SiN3. Although the crystals obtained after several weeks were shown to be the pyridinium salt [pyH][Te(N3)5] (2 b), probably formed by reaction of TeF4 with fluoride in the employed glass vessel to give [TeF5]− ions, the resulting pentaazidotellurate(IV) anion was unaffected. The pyridinium salt 2 b crystallizes in the triclinic space group P, for the anion a distorted Ψ-octahedral TeEN5 coordination is found (Figure 1). The [Te(N3)5]− ion represents the first structurally characterized anionic tellurium azide.7 Similar to neutral organotellurium(IV) azides,5, 6a secondary Te⋅⋅⋅N interactions below the sum of the van der Waals radii (3.61 Å)14 create network structures, which result in the octacoordinated tellurium atoms in 2 b (Figure 2). The TeN bond lengths vary from 2.075(2) Å (Te-N7) for the apical azide group, to between 2.175(2) and 2.256(2) Å for the basal azide groups. The apical N3 unit has the shortest NαNβ/NβNγ bond lengths and the smallest N-N-N angle. The N-Te-N bond angles range between 74.53(7) and 165.99(8)°, and the N-N-N bond angles are 175.8(2)–177.9(3)°. The rather irregular square-pyramidal structure likely results from electrostatic repulsions of the differently polarized Nα and Nβ atoms of the azide groups, both between each other, and with the lone pair of the TeIV center. Two sets of virtually identical TeN distances for two geminal basal azide groups are present with four different orientations towards the apical position (Figure 1). Molecular structure of the anion in 2 b with thermal ellipsoids at 50 % probability. Selected bond lengths [Å] and angles [°]: Te-N1 2.185(2), Te-N4 2.256(2), Te-N7 2.075(2), Te-N10 2.175(2), Te-N13 2.242(2); N1-N2-N3 176.9(2), N7-N8-N9 175.8(2), N1-Te-N7 85.34(8), N7-Te-N13 74.53(7). Secondary Te⋅⋅⋅N interactions between [Te(N3)5]− ions in 2 b. Selected separations [Å]: Te⋅⋅⋅N3(i) 3.324(2), Te⋅⋅⋅N4(i) 3.227(2), Te(ii)⋅⋅⋅N10 3.127(2). Symmetry operations: i=1−x, 1−y, −z; ii=−x, 1−y, −z. The electronic structure of the [Te(N3)5]− ion was calculated using different ab initio and density functional methods and basis sets (Table 1). All geometries have been fully optimized at the level chosen and led to distorted C1-symmetric minimum structures in good agreement with the experimental crystal-structure determination. Best results regarding bond lengths and vibrational frequencies were obtained by using the B3LYP/SDD combination. However, this finding may be due to accidental compensation of pseudopotential and basis deficiencies, which may suggest a higher degree of accuracy for this cheaper method. Method experiment E [Hartree] zpe [kcal mol−1] d(Te-Napical) [Å] d(Te-Nbasal) [Å] as(N3) [cm−1][a] – – 2.075 2.175–2.256 2112–2037 RHF/SDD −823.791 41.0 2.058 2.108–2.218 2311–2203 MPW1PW91/SDD −828.642 37.9 2.124 2.159–2.218 2133–2097 B3LYP/SDD −828.877 36.7 2.140 2.179–2.245 2067–2030 MP2(FC)/SDD −825.815 36.5 2.113 2.156–2.238 2275–2144 RHF/SDB-cc-pVTZ20b −824.538 44.7 2.020 2.098–2.209 2488–2369 B3LYP/SDB-cc-pVTZ20b −829.440 39.9 2.077 2.159–2.229 2226–2171 After the structural characterization of binary Te azide species of the type [Te(N3)3]+2 and [Te(N3)5]− (2 a and b) and the first direct synthesis and NMR spectroscopic characterization of the neutral tellurium azide molecule, Te(N3)4 (1), the race is now on for the isolation of the first selenium azide species. Studies in this regard are currently in progress.15 All manipulations of air- and moisture-sensitive materials were performed under an inert atmosphere of dry argon using flame-dried glass vessels and Schlenk techniques. Tellurium tetrafluoride and [Me4N][TeF5] were prepared according to the literature,16 trimethylsilyl azide (Aldrich) was used as received. Solvents were dried by standard methods, distilled, and stored over molecular sieves. Raman spectra were recorded on a Perkin Elmer 2000 NIR FT spectrometer fitted with a Nd-YAG laser (1064 nm). NMR spectra were recorded on a JEOL Eclipse 400 instrument, and chemical shifts were referenced to CH3NO2 (14N) and Me2Te (125Te). CAUTION: Binary tellurium azides are extremely hazardous shock-, friction-, and moisture-sensitive materials, which can explode unexpectedly. Appropriate safety precautions, such as Kevlar gloves (Sahlberg, Munich), face shield, leather jacket (Quadratfuss, Berlin), and teflon spatulas (Merck, Darmstadt; customized by LMU) must be employed; the quantities of substances handled in pure form by experienced personnel should not exceed 100 mg. 1: A suspension of TeF4 (0.3 mmol, 60 mg) in CFCl3 (10 mL) was treated with Me3SiN3 (1.2 mmol, 150 mg) at 0 °C. After stirring for 2 h the supernatant was decanted. The residue was dissolved in [D6]DMSO for NMR experiments. 14N NMR (28.9 MHz, [D6]DMSO, 25 °C; Δν1/2 (Hz)): δ=−141 (80, Nβ), −234 (1000, Nγ), ≈−270 ppm (extremely broad, Nα); 125Te NMR (126.1 MHz, [D6]DMSO, 25 °C): δ=1380 ppm. 2 a: A solution of [Me4N][TeF5] (0.15 mmol, 45 mg) in CH2Cl2 (5 mL) was reacted with Me3SiN3 (0.75 mmol, 85 mg) at 0 °C. After a few minutes, a yellow solution formed. After removal of all volatile materials in vacuo, a yellow solid remained. Raman (100 mW, 25 °C): =3037(20), 2979(20), 2921(20), 2105(40)/2055(15) [νas(N3)], 1472(10), 1459(10), 1447(15), 1312(15) [νs(N3)], 1263(10), 948(15), 753(20), 668(10), 639(20), 409(100)/347(85) [ν(TeN)], 255(30), 203(40), 174(50) cm−1; 14N NMR (28.9 MHz, CD2Cl2, 25 °C, Δν1/2 (Hz)): δ=−139 (20, Nβ), −236 (270, Nγ), ≈−250 (extremely broad, Nα), −337.8 ppm (3, Me4N); 125Te NMR (126.1 MHz, CD2Cl2, 25 °C): δ=1258 ppm. 2 b: A suspension of TeF4 (1 mmol, 205 mg) in dry pyridine (5 mL) was stirred for 12 h. All volatile materials were removed in vacuo and a part of the obtained residue (100 mg) was treated with Me3SiN3 (1.1 mmol, 125 mg) at 0 °C. After stirring for 1 h, the resulting yellow mixture was decanted. Upon cooling at −25 °C for 30 min, yellow crystals of 2 b can be carefully separated from the supernatant. Raman (100 mW, 25 °C): =3109(5), 3052(5), 2112(30)/2079(10)/2064(5)/2037(15) [νas(N3)], 1640(2), 1618(2), 1490(2), 1323(10) [νs(N3)], 1298(5), 1272(5), 1245(5), 1200(5), 1029(10), 1011(20), 667(5), 651(5), 639(10), 406(100)/342(50) [ν(TeN)], 300(20), 253(15), 193(35), 170(30) cm−1. 14N NMR (28.9 MHz, CDCl3, 25 °C, Δν1/2 (Hz)): δ=−115 (400, py), −141 (25, Nβ), −234 (360, Nγ), −245 ppm (extremely broad, Nα); 125Te NMR (126.1 MHz, CDCl3, 25 °C): δ=1334 ppm. Crystal data for 2 b: C5H6N16Te (Mr=417.81), yellow block, 0.14×0.22×0.30 mm, triclinic, space group P, a=7.6459(1), b=10.3875(1), c=10.5173(2) Å, α=117.6238(8), β=91.5610(9), γ=107.847(1)°, V=690.13(2) Å3, Z=2, ρcalcd=2.011 g cm−3, μ=2.184 mm−1, F(000)=400, Nonius Kappa CCD, MoKα (λ=0.71073 Å), T=200 K, θ range=3.35 to 27.52°, −9≤h≤9, −13≤k≤13, −13≤l≤13, reflections collected: 10 103, independent reflections: 3134 (Rint=0.0376), observed reflections: 2940 [I>2σ(I)], structure solution: SIR97,17 direct methods, data to parameters ratio: 14.0:1 [13.2:1 I>2σ(I)], final R indices: R1=0.0228, wR2=0.0545 for [I>2σ(I)]; R1=0.0257, wR2=0.0554 for all data, GOF on F2=1.160. CCDC-215495 (2 b) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or [email protected]). Ab initio calculations: Gaussian03 program package,18 HF-SCF, DFT, and MP2 methods, basis sets (N: Dunning/Huzinaga valence double-zeta, cc-pVTZ basis sets;19 Te: double-zeta or triple-zeta basis sets for the valence electrons and energy-consistent large-core ECPs for 46 core electrons20) as implemented in Gaussian. In memory of Marianne Baudler" @default.
- W2146573352 created "2016-06-24" @default.
- W2146573352 creator A5010784491 @default.
- W2146573352 creator A5049810567 @default.
- W2146573352 creator A5070082542 @default.
- W2146573352 creator A5090232108 @default.
- W2146573352 date "2003-12-08" @default.
- W2146573352 modified "2023-10-18" @default.
- W2146573352 title "Binary Tellurium(<scp>IV</scp>) Azides: Te(N<sub>3</sub>)<sub>4</sub> and [Te(N<sub>3</sub>)<sub>5</sub>]<sup>−</sup>" @default.
- W2146573352 cites W1967342191 @default.
- W2146573352 cites W1969635440 @default.
- W2146573352 cites W1972850665 @default.
- W2146573352 cites W1988078263 @default.
- W2146573352 cites W2004099874 @default.
- W2146573352 cites W2010598754 @default.
- W2146573352 cites W2016819081 @default.
- W2146573352 cites W2017072154 @default.
- W2146573352 cites W2024286349 @default.
- W2146573352 cites W2030841140 @default.
- W2146573352 cites W2043327592 @default.
- W2146573352 cites W2045734995 @default.
- W2146573352 cites W2051654698 @default.
- W2146573352 cites W2058616142 @default.
- W2146573352 cites W2060150759 @default.
- W2146573352 cites W2069006374 @default.
- W2146573352 cites W2087214287 @default.
- W2146573352 cites W2120966891 @default.
- W2146573352 cites W2141587139 @default.
- W2146573352 cites W2170991465 @default.
- W2146573352 cites W2950508635 @default.
- W2146573352 cites W2951122133 @default.
- W2146573352 cites W2952146581 @default.
- W2146573352 cites W2952171142 @default.
- W2146573352 cites W3105938624 @default.
- W2146573352 cites W4231749193 @default.
- W2146573352 cites W4241187504 @default.
- W2146573352 cites W4244001538 @default.
- W2146573352 cites W4250203072 @default.
- W2146573352 cites W4250893161 @default.
- W2146573352 doi "https://doi.org/10.1002/anie.200352656" @default.
- W2146573352 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/14673914" @default.
- W2146573352 hasPublicationYear "2003" @default.
- W2146573352 type Work @default.
- W2146573352 sameAs 2146573352 @default.
- W2146573352 citedByCount "72" @default.
- W2146573352 countsByYear W21465733522012 @default.
- W2146573352 countsByYear W21465733522013 @default.
- W2146573352 countsByYear W21465733522014 @default.
- W2146573352 countsByYear W21465733522015 @default.
- W2146573352 countsByYear W21465733522016 @default.
- W2146573352 countsByYear W21465733522018 @default.
- W2146573352 countsByYear W21465733522019 @default.
- W2146573352 countsByYear W21465733522020 @default.
- W2146573352 countsByYear W21465733522021 @default.
- W2146573352 countsByYear W21465733522023 @default.
- W2146573352 crossrefType "journal-article" @default.
- W2146573352 hasAuthorship W2146573352A5010784491 @default.
- W2146573352 hasAuthorship W2146573352A5049810567 @default.
- W2146573352 hasAuthorship W2146573352A5070082542 @default.
- W2146573352 hasAuthorship W2146573352A5090232108 @default.
- W2146573352 hasBestOaLocation W21465733521 @default.
- W2146573352 hasConcept C177322064 @default.
- W2146573352 hasConcept C179104552 @default.
- W2146573352 hasConcept C185592680 @default.
- W2146573352 hasConcept C33923547 @default.
- W2146573352 hasConcept C48372109 @default.
- W2146573352 hasConcept C538181303 @default.
- W2146573352 hasConcept C8010536 @default.
- W2146573352 hasConcept C94375191 @default.
- W2146573352 hasConceptScore W2146573352C177322064 @default.
- W2146573352 hasConceptScore W2146573352C179104552 @default.
- W2146573352 hasConceptScore W2146573352C185592680 @default.
- W2146573352 hasConceptScore W2146573352C33923547 @default.
- W2146573352 hasConceptScore W2146573352C48372109 @default.
- W2146573352 hasConceptScore W2146573352C538181303 @default.
- W2146573352 hasConceptScore W2146573352C8010536 @default.
- W2146573352 hasConceptScore W2146573352C94375191 @default.
- W2146573352 hasIssue "47" @default.
- W2146573352 hasLocation W21465733521 @default.
- W2146573352 hasLocation W21465733522 @default.
- W2146573352 hasOpenAccess W2146573352 @default.
- W2146573352 hasPrimaryLocation W21465733521 @default.
- W2146573352 hasRelatedWork W1531601525 @default.
- W2146573352 hasRelatedWork W1981228709 @default.
- W2146573352 hasRelatedWork W2248385968 @default.
- W2146573352 hasRelatedWork W2606230654 @default.
- W2146573352 hasRelatedWork W2607424097 @default.
- W2146573352 hasRelatedWork W2748952813 @default.
- W2146573352 hasRelatedWork W2899084033 @default.
- W2146573352 hasRelatedWork W2948807893 @default.
- W2146573352 hasRelatedWork W4387497383 @default.
- W2146573352 hasRelatedWork W2778153218 @default.
- W2146573352 hasVolume "42" @default.
- W2146573352 isParatext "false" @default.
- W2146573352 isRetracted "false" @default.
- W2146573352 magId "2146573352" @default.
- W2146573352 workType "article" @default.