Matches in SemOpenAlex for { <https://semopenalex.org/work/W2146857840> ?p ?o ?g. }
- W2146857840 endingPage "1584" @default.
- W2146857840 startingPage "1570" @default.
- W2146857840 abstract "In this work, we evaluated three iterative deconvolution algorithms and compared their performance to partial volume (PV) correction based on structural imaging in brain positron emission tomography (PET) using a database of Monte Carlo-simulated images. We limited our interest to quantitative radioligand PET imaging, particularly to 11C-Raclopride and striatal imaging. The studied deconvolution methods included Richardson–Lucy, reblurred Van Cittert, and reblurred Van Cittert with the total variation regularization. We studied the bias and variance of the regional estimates of binding potential (BP) values and the accuracy of regional TACs as a function of the applied image processing. The resolution/noise tradeoff in parametric BP images was addressed as well. The regional BP values and TACs obtained by deconvolution were almost as accurate than those by structural imaging-based PV correction (GTM method) when the ideal volumes of interests (VOIs) were used to extract TACs from the images. For deconvolution methods, the ideal VOIs were slightly eroded from the exact anatomical VOI to limit the bias due to tissue fraction effect which is not corrected for by deconvolution-based methods. For the GTM method, the ideal VOIs were the exact anatomical VOIs. The BP values and TACs by deconvolution were less affected by segmentation and registration errors than those with the GTM-based PV correction. The BP estimates and TACs with deconvolution-based PV correction were more accurate than BPs and TACs derived without PV correction. The parametric images obtained by the deconvolution-based PV correction showed considerably improved resolution with only slightly increased noise level compared to the case with no PV correction. The reblurred Van Cittert method was the best of the studied deconvolution methods. We conclude that the deconvolution is an interesting alternative to structural imaging-based PV correction as it leads to quantification results of similar accuracy, and it is less prone to registration and segmentation errors than structural imaging-based PV correction. Moreover, PV-corrected parametric images can be readily computed based on deconvolved dynamic images." @default.
- W2146857840 created "2016-06-24" @default.
- W2146857840 creator A5006436645 @default.
- W2146857840 creator A5021572716 @default.
- W2146857840 date "2008-02-01" @default.
- W2146857840 modified "2023-09-24" @default.
- W2146857840 title "Deconvolution-based partial volume correction in Raclopride-PET and Monte Carlo comparison to MR-based method" @default.
- W2146857840 cites W1585078554 @default.
- W2146857840 cites W1967341681 @default.
- W2146857840 cites W1968363504 @default.
- W2146857840 cites W1972622093 @default.
- W2146857840 cites W1973768550 @default.
- W2146857840 cites W1978722969 @default.
- W2146857840 cites W1992381398 @default.
- W2146857840 cites W2001277786 @default.
- W2146857840 cites W2031312034 @default.
- W2146857840 cites W2034432063 @default.
- W2146857840 cites W2038018468 @default.
- W2146857840 cites W2061528040 @default.
- W2146857840 cites W2074210823 @default.
- W2146857840 cites W2080848024 @default.
- W2146857840 cites W2088909704 @default.
- W2146857840 cites W2093156393 @default.
- W2146857840 cites W2097010502 @default.
- W2146857840 cites W2101445835 @default.
- W2146857840 cites W2102293690 @default.
- W2146857840 cites W2103559027 @default.
- W2146857840 cites W2117528462 @default.
- W2146857840 cites W2117671988 @default.
- W2146857840 cites W2120892458 @default.
- W2146857840 cites W2135054999 @default.
- W2146857840 cites W2141796362 @default.
- W2146857840 cites W2149479098 @default.
- W2146857840 cites W2151514667 @default.
- W2146857840 cites W2155595217 @default.
- W2146857840 cites W2159278324 @default.
- W2146857840 cites W2166728875 @default.
- W2146857840 cites W2166731963 @default.
- W2146857840 cites W2170608748 @default.
- W2146857840 doi "https://doi.org/10.1016/j.neuroimage.2007.10.038" @default.
- W2146857840 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18077187" @default.
- W2146857840 hasPublicationYear "2008" @default.
- W2146857840 type Work @default.
- W2146857840 sameAs 2146857840 @default.
- W2146857840 citedByCount "119" @default.
- W2146857840 countsByYear W21468578402012 @default.
- W2146857840 countsByYear W21468578402013 @default.
- W2146857840 countsByYear W21468578402014 @default.
- W2146857840 countsByYear W21468578402015 @default.
- W2146857840 countsByYear W21468578402016 @default.
- W2146857840 countsByYear W21468578402017 @default.
- W2146857840 countsByYear W21468578402018 @default.
- W2146857840 countsByYear W21468578402019 @default.
- W2146857840 countsByYear W21468578402020 @default.
- W2146857840 countsByYear W21468578402021 @default.
- W2146857840 countsByYear W21468578402022 @default.
- W2146857840 countsByYear W21468578402023 @default.
- W2146857840 crossrefType "journal-article" @default.
- W2146857840 hasAuthorship W2146857840A5006436645 @default.
- W2146857840 hasAuthorship W2146857840A5021572716 @default.
- W2146857840 hasConcept C105795698 @default.
- W2146857840 hasConcept C11413529 @default.
- W2146857840 hasConcept C117251300 @default.
- W2146857840 hasConcept C121332964 @default.
- W2146857840 hasConcept C154945302 @default.
- W2146857840 hasConcept C174576160 @default.
- W2146857840 hasConcept C19499675 @default.
- W2146857840 hasConcept C2989005 @default.
- W2146857840 hasConcept C33923547 @default.
- W2146857840 hasConcept C41008148 @default.
- W2146857840 hasConcept C71924100 @default.
- W2146857840 hasConcept C82233179 @default.
- W2146857840 hasConceptScore W2146857840C105795698 @default.
- W2146857840 hasConceptScore W2146857840C11413529 @default.
- W2146857840 hasConceptScore W2146857840C117251300 @default.
- W2146857840 hasConceptScore W2146857840C121332964 @default.
- W2146857840 hasConceptScore W2146857840C154945302 @default.
- W2146857840 hasConceptScore W2146857840C174576160 @default.
- W2146857840 hasConceptScore W2146857840C19499675 @default.
- W2146857840 hasConceptScore W2146857840C2989005 @default.
- W2146857840 hasConceptScore W2146857840C33923547 @default.
- W2146857840 hasConceptScore W2146857840C41008148 @default.
- W2146857840 hasConceptScore W2146857840C71924100 @default.
- W2146857840 hasConceptScore W2146857840C82233179 @default.
- W2146857840 hasIssue "4" @default.
- W2146857840 hasLocation W21468578401 @default.
- W2146857840 hasLocation W21468578402 @default.
- W2146857840 hasOpenAccess W2146857840 @default.
- W2146857840 hasPrimaryLocation W21468578401 @default.
- W2146857840 hasRelatedWork W1601492201 @default.
- W2146857840 hasRelatedWork W1968848981 @default.
- W2146857840 hasRelatedWork W1981264119 @default.
- W2146857840 hasRelatedWork W2030289522 @default.
- W2146857840 hasRelatedWork W2062592754 @default.
- W2146857840 hasRelatedWork W2069856722 @default.
- W2146857840 hasRelatedWork W2122196909 @default.
- W2146857840 hasRelatedWork W2152069300 @default.
- W2146857840 hasRelatedWork W2533894356 @default.