Matches in SemOpenAlex for { <https://semopenalex.org/work/W2146973938> ?p ?o ?g. }
- W2146973938 endingPage "156" @default.
- W2146973938 startingPage "143" @default.
- W2146973938 abstract "In speech processing applications, imposing sparsity constraints on high-order linear prediction coefficients and prediction residuals has proven successful in overcoming some of the limitation of conventional linear predictive modeling. However, this modeling scheme, named sparse linear prediction, is generally formulated as a linear programming problem that comes at the expenses of a much higher computational burden compared to the conventional approach. In this paper, we propose to solve the optimization problem by combining splitting methods with two approaches: the Douglas–Rachford method and the alternating direction method of multipliers. These methods allow to obtain solutions with a higher computational efficiency, orders of magnitude faster than with general purpose software based on interior-point methods. Furthermore, computational savings are achieved by solving the sparse linear prediction problem with lower accuracy than in previous work. In the experimental analysis, we clearly show that a solution with lower accuracy can achieve approximately the same performance as a high accuracy solution both objectively, in terms of prediction gain, as well as with perceptually relevant measures, when evaluated in a speech reconstruction application." @default.
- W2146973938 created "2016-06-24" @default.
- W2146973938 creator A5000691788 @default.
- W2146973938 creator A5026658144 @default.
- W2146973938 creator A5073284331 @default.
- W2146973938 creator A5074156299 @default.
- W2146973938 date "2016-02-01" @default.
- W2146973938 modified "2023-09-30" @default.
- W2146973938 title "Fast algorithms for high-order sparse linear prediction with applications to speech processing" @default.
- W2146973938 cites W1802969839 @default.
- W2146973938 cites W1953936588 @default.
- W2146973938 cites W1966264494 @default.
- W2146973938 cites W1967073510 @default.
- W2146973938 cites W1968735445 @default.
- W2146973938 cites W1969128975 @default.
- W2146973938 cites W1970467060 @default.
- W2146973938 cites W1980450998 @default.
- W2146973938 cites W1982139997 @default.
- W2146973938 cites W1986364567 @default.
- W2146973938 cites W1990768232 @default.
- W2146973938 cites W1995319862 @default.
- W2146973938 cites W1995828869 @default.
- W2146973938 cites W1996287810 @default.
- W2146973938 cites W1998752217 @default.
- W2146973938 cites W2003372231 @default.
- W2146973938 cites W2006175881 @default.
- W2146973938 cites W2006262045 @default.
- W2146973938 cites W2019569173 @default.
- W2146973938 cites W2041165203 @default.
- W2146973938 cites W2045079045 @default.
- W2146973938 cites W2046795941 @default.
- W2146973938 cites W2055507002 @default.
- W2146973938 cites W2056510226 @default.
- W2146973938 cites W2058532290 @default.
- W2146973938 cites W2061129424 @default.
- W2146973938 cites W2076495042 @default.
- W2146973938 cites W2090861223 @default.
- W2146973938 cites W2091360050 @default.
- W2146973938 cites W2097645910 @default.
- W2146973938 cites W2098488280 @default.
- W2146973938 cites W2100556411 @default.
- W2146973938 cites W2100705753 @default.
- W2146973938 cites W2101986122 @default.
- W2146973938 cites W2102182691 @default.
- W2146973938 cites W2104765941 @default.
- W2146973938 cites W2108952202 @default.
- W2146973938 cites W2117402460 @default.
- W2146973938 cites W2123684326 @default.
- W2146973938 cites W2126607811 @default.
- W2146973938 cites W2137213227 @default.
- W2146973938 cites W2142280715 @default.
- W2146973938 cites W2142282591 @default.
- W2146973938 cites W2143749403 @default.
- W2146973938 cites W2144600569 @default.
- W2146973938 cites W2150620152 @default.
- W2146973938 cites W2154291215 @default.
- W2146973938 cites W2154332973 @default.
- W2146973938 cites W2158881414 @default.
- W2146973938 cites W2165291881 @default.
- W2146973938 cites W2326591006 @default.
- W2146973938 cites W2949483514 @default.
- W2146973938 cites W4292363360 @default.
- W2146973938 cites W4299729612 @default.
- W2146973938 cites W74720146 @default.
- W2146973938 doi "https://doi.org/10.1016/j.specom.2015.09.013" @default.
- W2146973938 hasPublicationYear "2016" @default.
- W2146973938 type Work @default.
- W2146973938 sameAs 2146973938 @default.
- W2146973938 citedByCount "15" @default.
- W2146973938 countsByYear W21469739382015 @default.
- W2146973938 countsByYear W21469739382016 @default.
- W2146973938 countsByYear W21469739382017 @default.
- W2146973938 countsByYear W21469739382018 @default.
- W2146973938 countsByYear W21469739382019 @default.
- W2146973938 countsByYear W21469739382020 @default.
- W2146973938 countsByYear W21469739382021 @default.
- W2146973938 countsByYear W21469739382023 @default.
- W2146973938 crossrefType "journal-article" @default.
- W2146973938 hasAuthorship W2146973938A5000691788 @default.
- W2146973938 hasAuthorship W2146973938A5026658144 @default.
- W2146973938 hasAuthorship W2146973938A5073284331 @default.
- W2146973938 hasAuthorship W2146973938A5074156299 @default.
- W2146973938 hasBestOaLocation W21469739382 @default.
- W2146973938 hasConcept C105964291 @default.
- W2146973938 hasConcept C11413529 @default.
- W2146973938 hasConcept C126255220 @default.
- W2146973938 hasConcept C131109320 @default.
- W2146973938 hasConcept C154945302 @default.
- W2146973938 hasConcept C179799912 @default.
- W2146973938 hasConcept C33923547 @default.
- W2146973938 hasConcept C41008148 @default.
- W2146973938 hasConcept C41045048 @default.
- W2146973938 hasConcept C59883199 @default.
- W2146973938 hasConcept C61328038 @default.
- W2146973938 hasConceptScore W2146973938C105964291 @default.
- W2146973938 hasConceptScore W2146973938C11413529 @default.
- W2146973938 hasConceptScore W2146973938C126255220 @default.
- W2146973938 hasConceptScore W2146973938C131109320 @default.