Matches in SemOpenAlex for { <https://semopenalex.org/work/W2147075791> ?p ?o ?g. }
- W2147075791 endingPage "3066" @default.
- W2147075791 startingPage "3060" @default.
- W2147075791 abstract "Despite much dynamical cellular behaviour being achieved by accurate regulation of protein concentrations, messenger RNA abundances, measured by microarray technology, and more recently by deep sequencing techniques, are widely used as proxies for protein measurements. Although for some species and under some conditions, there is good correlation between transcriptome and proteome level measurements, such correlation is by no means universal due to post-transcriptional and post-translational regulation, both of which are highly prevalent in cells. Here, we seek to develop a data-driven machine learning approach to bridging the gap between these two levels of high-throughput omic measurements on Saccharomyces cerevisiae and deploy the model in a novel way to uncover mRNA-protein pairs that are candidates for post-translational regulation.The application of feature selection by sparsity inducing regression (l₁ norm regularization) leads to a stable set of features: i.e. mRNA, ribosomal occupancy, ribosome density, tRNA adaptation index and codon bias while achieving a feature reduction from 37 to 5. A linear predictor used with these features is capable of predicting protein concentrations fairly accurately (R² = 0.86). Proteins whose concentration cannot be predicted accurately, taken as outliers with respect to the predictor, are shown to have annotation evidence of post-translational modification, significantly more than random subsets of similar size P < 0.02. In a data mining sense, this work also shows a wider point that outliers with respect to a learning method can carry meaningful information about a problem domain." @default.
- W2147075791 created "2016-06-24" @default.
- W2147075791 creator A5033579333 @default.
- W2147075791 creator A5056903370 @default.
- W2147075791 date "2013-09-16" @default.
- W2147075791 modified "2023-10-12" @default.
- W2147075791 title "Bridging the gap between transcriptome and proteome measurements identifies post-translationally regulated genes" @default.
- W2147075791 cites W1485152027 @default.
- W2147075791 cites W1544923801 @default.
- W2147075791 cites W1968403457 @default.
- W2147075791 cites W1968798075 @default.
- W2147075791 cites W1969837908 @default.
- W2147075791 cites W1973673322 @default.
- W2147075791 cites W1982652137 @default.
- W2147075791 cites W1993009001 @default.
- W2147075791 cites W1996423252 @default.
- W2147075791 cites W2008207297 @default.
- W2147075791 cites W2010532309 @default.
- W2147075791 cites W2013947447 @default.
- W2147075791 cites W2017057004 @default.
- W2147075791 cites W2017114984 @default.
- W2147075791 cites W2026086206 @default.
- W2147075791 cites W2036672372 @default.
- W2147075791 cites W2043983880 @default.
- W2147075791 cites W2049883153 @default.
- W2147075791 cites W2051349181 @default.
- W2147075791 cites W2063779182 @default.
- W2147075791 cites W2066363580 @default.
- W2147075791 cites W2069500900 @default.
- W2147075791 cites W2069645361 @default.
- W2147075791 cites W2073881036 @default.
- W2147075791 cites W2079493886 @default.
- W2147075791 cites W2086131827 @default.
- W2147075791 cites W2096561521 @default.
- W2147075791 cites W2101345690 @default.
- W2147075791 cites W2102206129 @default.
- W2147075791 cites W2102221598 @default.
- W2147075791 cites W2102794349 @default.
- W2147075791 cites W2106724679 @default.
- W2147075791 cites W2107180520 @default.
- W2147075791 cites W2107363136 @default.
- W2147075791 cites W2107804881 @default.
- W2147075791 cites W2109281577 @default.
- W2147075791 cites W2109363337 @default.
- W2147075791 cites W2114070867 @default.
- W2147075791 cites W2115530456 @default.
- W2147075791 cites W2121166244 @default.
- W2147075791 cites W2122189635 @default.
- W2147075791 cites W2127745643 @default.
- W2147075791 cites W2127895252 @default.
- W2147075791 cites W2128538135 @default.
- W2147075791 cites W2129178024 @default.
- W2147075791 cites W2129288498 @default.
- W2147075791 cites W2130253098 @default.
- W2147075791 cites W2139395990 @default.
- W2147075791 cites W2143443658 @default.
- W2147075791 cites W2147426864 @default.
- W2147075791 cites W2150091336 @default.
- W2147075791 cites W2150566147 @default.
- W2147075791 cites W2150750144 @default.
- W2147075791 cites W2161811833 @default.
- W2147075791 cites W2163963584 @default.
- W2147075791 cites W2168273559 @default.
- W2147075791 cites W2170027508 @default.
- W2147075791 cites W2170909134 @default.
- W2147075791 cites W2170949754 @default.
- W2147075791 cites W4232605099 @default.
- W2147075791 doi "https://doi.org/10.1093/bioinformatics/btt537" @default.
- W2147075791 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24045772" @default.
- W2147075791 hasPublicationYear "2013" @default.
- W2147075791 type Work @default.
- W2147075791 sameAs 2147075791 @default.
- W2147075791 citedByCount "26" @default.
- W2147075791 countsByYear W21470757912014 @default.
- W2147075791 countsByYear W21470757912015 @default.
- W2147075791 countsByYear W21470757912016 @default.
- W2147075791 countsByYear W21470757912017 @default.
- W2147075791 countsByYear W21470757912018 @default.
- W2147075791 countsByYear W21470757912019 @default.
- W2147075791 countsByYear W21470757912020 @default.
- W2147075791 countsByYear W21470757912021 @default.
- W2147075791 countsByYear W21470757912022 @default.
- W2147075791 countsByYear W21470757912023 @default.
- W2147075791 crossrefType "journal-article" @default.
- W2147075791 hasAuthorship W2147075791A5033579333 @default.
- W2147075791 hasAuthorship W2147075791A5056903370 @default.
- W2147075791 hasConcept C104317684 @default.
- W2147075791 hasConcept C104397665 @default.
- W2147075791 hasConcept C148483581 @default.
- W2147075791 hasConcept C150194340 @default.
- W2147075791 hasConcept C154945302 @default.
- W2147075791 hasConcept C162317418 @default.
- W2147075791 hasConcept C38062823 @default.
- W2147075791 hasConcept C41008148 @default.
- W2147075791 hasConcept C46111723 @default.
- W2147075791 hasConcept C54355233 @default.
- W2147075791 hasConcept C67705224 @default.
- W2147075791 hasConcept C70721500 @default.