Matches in SemOpenAlex for { <https://semopenalex.org/work/W2147078972> ?p ?o ?g. }
- W2147078972 abstract "It is well known that the deterministic dynamics of biochemical reaction networks can be more easily studied if timescale separation conditions are invoked (the quasi-steady-state assumption). In this case the deterministic dynamics of a large network of elementary reactions are well described by the dynamics of a smaller network of effective reactions. Each of the latter represents a group of elementary reactions in the large network and has associated with it an effective macroscopic rate law. A popular method to achieve model reduction in the presence of intrinsic noise consists of using the effective macroscopic rate laws to heuristically deduce effective probabilities for the effective reactions which then enables simulation via the stochastic simulation algorithm (SSA). The validity of this heuristic SSA method is a priori doubtful because the reaction probabilities for the SSA have only been rigorously derived from microscopic physics arguments for elementary reactions.We here obtain, by rigorous means and in closed-form, a reduced linear Langevin equation description of the stochastic dynamics of monostable biochemical networks in conditions characterized by small intrinsic noise and timescale separation. The slow-scale linear noise approximation (ssLNA), as the new method is called, is used to calculate the intrinsic noise statistics of enzyme and gene networks. The results agree very well with SSA simulations of the non-reduced network of elementary reactions. In contrast the conventional heuristic SSA is shown to overestimate the size of noise for Michaelis-Menten kinetics, considerably under-estimate the size of noise for Hill-type kinetics and in some cases even miss the prediction of noise-induced oscillations.A new general method, the ssLNA, is derived and shown to correctly describe the statistics of intrinsic noise about the macroscopic concentrations under timescale separation conditions. The ssLNA provides a simple and accurate means of performing stochastic model reduction and hence it is expected to be of widespread utility in studying the dynamics of large noisy reaction networks, as is common in computational and systems biology." @default.
- W2147078972 created "2016-06-24" @default.
- W2147078972 creator A5029788536 @default.
- W2147078972 creator A5039571059 @default.
- W2147078972 creator A5064292789 @default.
- W2147078972 date "2012-05-14" @default.
- W2147078972 modified "2023-09-26" @default.
- W2147078972 title "The slow-scale linear noise approximation: an accurate, reduced stochastic description of biochemical networks under timescale separation conditions" @default.
- W2147078972 cites W1486817521 @default.
- W2147078972 cites W1519546898 @default.
- W2147078972 cites W1557148833 @default.
- W2147078972 cites W1590222219 @default.
- W2147078972 cites W1938657618 @default.
- W2147078972 cites W1973890190 @default.
- W2147078972 cites W1981861698 @default.
- W2147078972 cites W1986206712 @default.
- W2147078972 cites W1988304169 @default.
- W2147078972 cites W1988791304 @default.
- W2147078972 cites W1989192823 @default.
- W2147078972 cites W1996405985 @default.
- W2147078972 cites W1999777663 @default.
- W2147078972 cites W2002164453 @default.
- W2147078972 cites W2013947447 @default.
- W2147078972 cites W2014654128 @default.
- W2147078972 cites W2018670096 @default.
- W2147078972 cites W2021767976 @default.
- W2147078972 cites W2026985605 @default.
- W2147078972 cites W2030945597 @default.
- W2147078972 cites W2037768790 @default.
- W2147078972 cites W2041248976 @default.
- W2147078972 cites W2042443355 @default.
- W2147078972 cites W2051881353 @default.
- W2147078972 cites W2053460598 @default.
- W2147078972 cites W2053572465 @default.
- W2147078972 cites W2056393594 @default.
- W2147078972 cites W2057311914 @default.
- W2147078972 cites W2059053384 @default.
- W2147078972 cites W2078119846 @default.
- W2147078972 cites W2084998586 @default.
- W2147078972 cites W2085061065 @default.
- W2147078972 cites W2088925327 @default.
- W2147078972 cites W2096065176 @default.
- W2147078972 cites W2096705138 @default.
- W2147078972 cites W2097851712 @default.
- W2147078972 cites W2098335118 @default.
- W2147078972 cites W2101966172 @default.
- W2147078972 cites W2115020206 @default.
- W2147078972 cites W2118443758 @default.
- W2147078972 cites W2118495200 @default.
- W2147078972 cites W2122121413 @default.
- W2147078972 cites W2125085714 @default.
- W2147078972 cites W2130060017 @default.
- W2147078972 cites W2135694744 @default.
- W2147078972 cites W2148192047 @default.
- W2147078972 cites W2155418451 @default.
- W2147078972 cites W2167154952 @default.
- W2147078972 cites W3099675220 @default.
- W2147078972 cites W3103218751 @default.
- W2147078972 cites W571141297 @default.
- W2147078972 cites W60058380 @default.
- W2147078972 doi "https://doi.org/10.1186/1752-0509-6-39" @default.
- W2147078972 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3532178" @default.
- W2147078972 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22583770" @default.
- W2147078972 hasPublicationYear "2012" @default.
- W2147078972 type Work @default.
- W2147078972 sameAs 2147078972 @default.
- W2147078972 citedByCount "117" @default.
- W2147078972 countsByYear W21470789722012 @default.
- W2147078972 countsByYear W21470789722013 @default.
- W2147078972 countsByYear W21470789722014 @default.
- W2147078972 countsByYear W21470789722015 @default.
- W2147078972 countsByYear W21470789722016 @default.
- W2147078972 countsByYear W21470789722017 @default.
- W2147078972 countsByYear W21470789722018 @default.
- W2147078972 countsByYear W21470789722019 @default.
- W2147078972 countsByYear W21470789722020 @default.
- W2147078972 countsByYear W21470789722021 @default.
- W2147078972 countsByYear W21470789722022 @default.
- W2147078972 countsByYear W21470789722023 @default.
- W2147078972 crossrefType "journal-article" @default.
- W2147078972 hasAuthorship W2147078972A5029788536 @default.
- W2147078972 hasAuthorship W2147078972A5039571059 @default.
- W2147078972 hasAuthorship W2147078972A5064292789 @default.
- W2147078972 hasBestOaLocation W21470789721 @default.
- W2147078972 hasConcept C111472728 @default.
- W2147078972 hasConcept C115961682 @default.
- W2147078972 hasConcept C121332964 @default.
- W2147078972 hasConcept C121864883 @default.
- W2147078972 hasConcept C126255220 @default.
- W2147078972 hasConcept C128805008 @default.
- W2147078972 hasConcept C138885662 @default.
- W2147078972 hasConcept C154945302 @default.
- W2147078972 hasConcept C173801870 @default.
- W2147078972 hasConcept C2777577648 @default.
- W2147078972 hasConcept C2778755073 @default.
- W2147078972 hasConcept C28826006 @default.
- W2147078972 hasConcept C33923547 @default.
- W2147078972 hasConcept C41008148 @default.
- W2147078972 hasConcept C62520636 @default.
- W2147078972 hasConcept C75553542 @default.