Matches in SemOpenAlex for { <https://semopenalex.org/work/W2147119488> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2147119488 endingPage "1924" @default.
- W2147119488 startingPage "1913" @default.
- W2147119488 abstract "The ensemble Kalman filter (EnKF) is a data assimilation scheme based on the traditional Kalman filter update equation. An ensemble of forecasts are used to estimate the background-error covariances needed to compute the Kalman gain. It is known that if the same observations and the same gain are used to update each member of the ensemble, the ensemble will systematically underestimate analysis-error covariances. This will cause a degradation of subsequent analyses and may lead to filter divergence. For large ensembles, it is known that this problem can be alleviated by treating the observations as random variables, adding random perturbations to them with the correct statistics. Two important consequences of sampling error in the estimate of analysis-error covariances in the EnKF are discussed here. The first results from the analysis-error covariance being a nonlinear function of the backgrounderror covariance in the Kalman filter. Due to this nonlinearity, analysis-error covariance estimates may be negatively biased, even if the ensemble background-error covariance estimates are unbiased. This problem must be dealt with in any Kalman filter‐based ensemble data assimilation scheme. A second consequence of sampling error is particular to schemes like the EnKF that use perturbed observations. While this procedure gives asymptotically correct analysis-error covariance estimates for large ensembles, the addition of perturbed observations adds an additional source of sampling error related to the estimation of the observation-error covariances. In addition to reducing the accuracy of the analysis-error covariance estimate, this extra source of sampling error increases the probability that the analysis-error covariance will be underestimated. Because of this, ensemble data assimilation methods that use perturbed observations are expected to be less accurate than those which do not. Several ensemble filter formulations have recently been proposed that do not require perturbed observations. This study examines a particularly simple implementation called the ensemble square root filter, or EnSRF. The EnSRF uses the traditional Kalman gain for updating the ensemble mean but uses a ‘‘reduced’’ Kalman gain to update deviations from the ensemble mean. There is no additional computational cost incurred by the EnSRF relative to the EnKF when the observations have independent errors and are processed one at a time. Using a hierarchy of perfect model assimilation experiments, it is demonstrated that the elimination of the sampling error associated with the perturbed observations makes the EnSRF more accurate than the EnKF for the same ensemble size." @default.
- W2147119488 created "2016-06-24" @default.
- W2147119488 creator A5012176366 @default.
- W2147119488 creator A5075733431 @default.
- W2147119488 date "2002-07-01" @default.
- W2147119488 modified "2023-10-14" @default.
- W2147119488 title "Ensemble Data Assimilation without Perturbed Observations" @default.
- W2147119488 cites W1982875779 @default.
- W2147119488 cites W1987308763 @default.
- W2147119488 cites W1987986777 @default.
- W2147119488 cites W1993512681 @default.
- W2147119488 cites W1993597482 @default.
- W2147119488 cites W2030774493 @default.
- W2147119488 cites W2049013344 @default.
- W2147119488 cites W2083402998 @default.
- W2147119488 cites W2146803308 @default.
- W2147119488 cites W2157098139 @default.
- W2147119488 cites W2169146757 @default.
- W2147119488 cites W2173190456 @default.
- W2147119488 cites W2174784159 @default.
- W2147119488 cites W2175788649 @default.
- W2147119488 cites W2176150232 @default.
- W2147119488 cites W2179229003 @default.
- W2147119488 cites W2179584279 @default.
- W2147119488 cites W2179860363 @default.
- W2147119488 cites W2513572844 @default.
- W2147119488 cites W4237142403 @default.
- W2147119488 cites W4240766031 @default.
- W2147119488 cites W4366305752 @default.
- W2147119488 doi "https://doi.org/10.1175/1520-0493(2002)130<1913:edawpo>2.0.co;2" @default.
- W2147119488 hasPublicationYear "2002" @default.
- W2147119488 type Work @default.
- W2147119488 sameAs 2147119488 @default.
- W2147119488 citedByCount "1201" @default.
- W2147119488 countsByYear W21471194882012 @default.
- W2147119488 countsByYear W21471194882013 @default.
- W2147119488 countsByYear W21471194882014 @default.
- W2147119488 countsByYear W21471194882015 @default.
- W2147119488 countsByYear W21471194882016 @default.
- W2147119488 countsByYear W21471194882017 @default.
- W2147119488 countsByYear W21471194882018 @default.
- W2147119488 countsByYear W21471194882019 @default.
- W2147119488 countsByYear W21471194882020 @default.
- W2147119488 countsByYear W21471194882021 @default.
- W2147119488 countsByYear W21471194882022 @default.
- W2147119488 countsByYear W21471194882023 @default.
- W2147119488 crossrefType "journal-article" @default.
- W2147119488 hasAuthorship W2147119488A5012176366 @default.
- W2147119488 hasAuthorship W2147119488A5075733431 @default.
- W2147119488 hasConcept C127313418 @default.
- W2147119488 hasConcept C138885662 @default.
- W2147119488 hasConcept C153294291 @default.
- W2147119488 hasConcept C205649164 @default.
- W2147119488 hasConcept C24552861 @default.
- W2147119488 hasConcept C39432304 @default.
- W2147119488 hasConcept C41895202 @default.
- W2147119488 hasConcept C49204034 @default.
- W2147119488 hasConcept C75649859 @default.
- W2147119488 hasConceptScore W2147119488C127313418 @default.
- W2147119488 hasConceptScore W2147119488C138885662 @default.
- W2147119488 hasConceptScore W2147119488C153294291 @default.
- W2147119488 hasConceptScore W2147119488C205649164 @default.
- W2147119488 hasConceptScore W2147119488C24552861 @default.
- W2147119488 hasConceptScore W2147119488C39432304 @default.
- W2147119488 hasConceptScore W2147119488C41895202 @default.
- W2147119488 hasConceptScore W2147119488C49204034 @default.
- W2147119488 hasConceptScore W2147119488C75649859 @default.
- W2147119488 hasIssue "7" @default.
- W2147119488 hasLocation W21471194881 @default.
- W2147119488 hasOpenAccess W2147119488 @default.
- W2147119488 hasPrimaryLocation W21471194881 @default.
- W2147119488 hasRelatedWork W2033878009 @default.
- W2147119488 hasRelatedWork W2056747172 @default.
- W2147119488 hasRelatedWork W2110070006 @default.
- W2147119488 hasRelatedWork W2245737210 @default.
- W2147119488 hasRelatedWork W2357748277 @default.
- W2147119488 hasRelatedWork W2362904572 @default.
- W2147119488 hasRelatedWork W2969491003 @default.
- W2147119488 hasRelatedWork W3012128377 @default.
- W2147119488 hasRelatedWork W4306398691 @default.
- W2147119488 hasRelatedWork W3129927055 @default.
- W2147119488 hasVolume "130" @default.
- W2147119488 isParatext "false" @default.
- W2147119488 isRetracted "false" @default.
- W2147119488 magId "2147119488" @default.
- W2147119488 workType "article" @default.