Matches in SemOpenAlex for { <https://semopenalex.org/work/W2147168021> ?p ?o ?g. }
- W2147168021 abstract "Aim: Physiologically based toxicokinetic (PBTK) models are computational tools, which simulate the absorption, distribution, metabolism, and excretion of chemicals. The purpose of this study was to develop a physiologically based pharmacokinetic (PBPK) model with a high level of transparency. The model should be able to predict blood and urine concentrations of environmental chemicals and metabolites, given a certain environmental or occupational exposure scenario. Model: The model refers to a reference human of 70 kg. The partition coefficients of the parent compound and its metabolites (blood:air and tissue:blood partition coefficients of 11 organs) are estimated by means of quantitative structure–property relationship, in which five easily available physicochemical properties of the compound are the independent parameters. The model gives a prediction of the fate of the compound, based on easily available chemical properties; therefore, it can be applied as a generic model applicable to multiple compounds. Three routes of uptake are considered (inhalation, dermal, and/or oral) as well as two built-in exercise levels (at rest and at light work). Dermal uptake is estimated by the use of a dermal diffusion-based module that considers dermal deposition rate and duration of deposition. Moreover, evaporation during skin contact is fully accounted for and related to the volatility of the substance. Saturable metabolism according to Michaelis–Menten kinetics can be modelled in any of 11 organs/tissues or in liver only. Renal tubular resorption is based on a built-in algorithm, dependent on the (log) octanol:water partition coefficient. Enterohepatic circulation is optional at a user-defined rate. The generic PBTK model is available as a spreadsheet application in MS Excel. The differential equations of the model are programmed in Visual Basic. Output is presented as numerical listing over time in tabular form and in graphs. The MS Excel application of the PBTK model is available as freeware. Experimental: The accuracy of the model prediction is illustrated by simulating experimental observations. Published experimental inhalation and dermal exposure studies on a series of different chemicals (pyrene, N-methyl-pyrrolidone, methyl-tert-butylether, heptane, 2-butoxyethanol, and ethanol) were selected to compare the observed data with the model-simulated data. The examples show that the model-predicted concentrations in blood and/or urine after inhalation and/or transdermal uptake have an accuracy of within an order of magnitude. Conclusions: It is advocated that this PBTK model, called IndusChemFate, is suitable for ‘first tier assessments’ and for early explorations of the fate of chemicals and/or metabolites in the human body. The availability of a simple model with a minimum burden of input information on the parent compound and its metabolites might be a stimulation to apply PBTK modelling more often in the field of biomonitoring and exposure science." @default.
- W2147168021 created "2016-06-24" @default.
- W2147168021 date "2011-10-01" @default.
- W2147168021 modified "2023-10-05" @default.
- W2147168021 title "A Generic, Cross-Chemical Predictive PBTK Model with Multiple Entry Routes Running as Application in MS Excel; Design of the Model and Comparison of Predictions with Experimental Results" @default.
- W2147168021 cites W1946257617 @default.
- W2147168021 cites W1965704067 @default.
- W2147168021 cites W1968031962 @default.
- W2147168021 cites W1972706394 @default.
- W2147168021 cites W1975377405 @default.
- W2147168021 cites W1976917234 @default.
- W2147168021 cites W1979610882 @default.
- W2147168021 cites W1984643282 @default.
- W2147168021 cites W1988275545 @default.
- W2147168021 cites W1990408607 @default.
- W2147168021 cites W1990762022 @default.
- W2147168021 cites W1993006119 @default.
- W2147168021 cites W1998211865 @default.
- W2147168021 cites W2003384540 @default.
- W2147168021 cites W2009095427 @default.
- W2147168021 cites W2010155971 @default.
- W2147168021 cites W2010648305 @default.
- W2147168021 cites W2012496576 @default.
- W2147168021 cites W2014285786 @default.
- W2147168021 cites W2016136432 @default.
- W2147168021 cites W2018779258 @default.
- W2147168021 cites W2019306159 @default.
- W2147168021 cites W2022162216 @default.
- W2147168021 cites W2029590089 @default.
- W2147168021 cites W2029734974 @default.
- W2147168021 cites W2031742675 @default.
- W2147168021 cites W2033459829 @default.
- W2147168021 cites W2037647662 @default.
- W2147168021 cites W2048521311 @default.
- W2147168021 cites W2050760815 @default.
- W2147168021 cites W2053479657 @default.
- W2147168021 cites W2055481443 @default.
- W2147168021 cites W2068358081 @default.
- W2147168021 cites W2070184914 @default.
- W2147168021 cites W2086033981 @default.
- W2147168021 cites W2096357867 @default.
- W2147168021 cites W2106388928 @default.
- W2147168021 cites W2108790256 @default.
- W2147168021 cites W2120790491 @default.
- W2147168021 cites W2126667928 @default.
- W2147168021 cites W2128944302 @default.
- W2147168021 cites W2132441900 @default.
- W2147168021 cites W2133539122 @default.
- W2147168021 cites W2136229770 @default.
- W2147168021 cites W2136795150 @default.
- W2147168021 cites W2139684042 @default.
- W2147168021 cites W2143731124 @default.
- W2147168021 cites W2147462150 @default.
- W2147168021 cites W2155880372 @default.
- W2147168021 cites W2156407934 @default.
- W2147168021 cites W2156661627 @default.
- W2147168021 cites W2156816631 @default.
- W2147168021 cites W2166524378 @default.
- W2147168021 cites W2169278820 @default.
- W2147168021 cites W2321142343 @default.
- W2147168021 cites W3175318380 @default.
- W2147168021 cites W4230626870 @default.
- W2147168021 cites W4241259955 @default.
- W2147168021 doi "https://doi.org/10.1093/annhyg/mer075" @default.
- W2147168021 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21998005" @default.
- W2147168021 hasPublicationYear "2011" @default.
- W2147168021 type Work @default.
- W2147168021 sameAs 2147168021 @default.
- W2147168021 citedByCount "30" @default.
- W2147168021 countsByYear W21471680212012 @default.
- W2147168021 countsByYear W21471680212013 @default.
- W2147168021 countsByYear W21471680212014 @default.
- W2147168021 countsByYear W21471680212015 @default.
- W2147168021 countsByYear W21471680212016 @default.
- W2147168021 countsByYear W21471680212017 @default.
- W2147168021 countsByYear W21471680212018 @default.
- W2147168021 countsByYear W21471680212020 @default.
- W2147168021 countsByYear W21471680212021 @default.
- W2147168021 countsByYear W21471680212022 @default.
- W2147168021 countsByYear W21471680212023 @default.
- W2147168021 crossrefType "journal-article" @default.
- W2147168021 hasBestOaLocation W21471680211 @default.
- W2147168021 hasConcept C107872376 @default.
- W2147168021 hasConcept C112705442 @default.
- W2147168021 hasConcept C178790620 @default.
- W2147168021 hasConcept C185592680 @default.
- W2147168021 hasConcept C185867374 @default.
- W2147168021 hasConcept C186060115 @default.
- W2147168021 hasConcept C192552737 @default.
- W2147168021 hasConcept C195289149 @default.
- W2147168021 hasConcept C202751555 @default.
- W2147168021 hasConcept C55493867 @default.
- W2147168021 hasConcept C62231903 @default.
- W2147168021 hasConcept C69366308 @default.
- W2147168021 hasConcept C71924100 @default.
- W2147168021 hasConcept C86803240 @default.
- W2147168021 hasConcept C98274493 @default.
- W2147168021 hasConceptScore W2147168021C107872376 @default.
- W2147168021 hasConceptScore W2147168021C112705442 @default.
- W2147168021 hasConceptScore W2147168021C178790620 @default.