Matches in SemOpenAlex for { <https://semopenalex.org/work/W2147763277> ?p ?o ?g. }
- W2147763277 endingPage "7763" @default.
- W2147763277 startingPage "7755" @default.
- W2147763277 abstract "Cancer vaccine feasibility would benefit from reducing the number and duration of vaccinations without diminishing efficacy. However, the duration of in vivo studies and the huge number of possible variations in vaccination protocols have discouraged their optimization. In this study, we employed an established mouse model of preventive vaccination using HER-2/neu transgenic mice (BALB-neuT) to validate in silico-designed protocols that reduce the number of vaccinations and optimize efficacy. With biological training, the in silico model captured the overall in vivo behavior and highlighted certain critical issues. First, although vaccinations could be reduced in number without sacrificing efficacy, the intensity of early vaccinations was a key determinant of long-term tumor prevention needed for predictive utility in the model. Second, after vaccinations ended, older mice exhibited more rapid tumor onset and sharper decline in antibody levels than young mice, emphasizing immune aging as a key variable in models of vaccine protocols for elderly individuals. Long-term studies confirmed predictions of in silico modeling in which an immune plateau phase, once reached, could be maintained with a reduced number of vaccinations. Furthermore, that rapid priming in young mice is required for long-term antitumor protection, and that the accuracy of mathematical modeling of early immune responses is critical. Finally, that the design and modeling of cancer vaccines and vaccination protocols must take into account the progressive aging of the immune system, by striving to boost immune responses in elderly hosts. Our results show that an integrated in vivo-in silico approach could improve both mathematical and biological models of cancer immunoprevention." @default.
- W2147763277 created "2016-06-24" @default.
- W2147763277 creator A5004388338 @default.
- W2147763277 creator A5013677367 @default.
- W2147763277 creator A5032993549 @default.
- W2147763277 creator A5034271408 @default.
- W2147763277 creator A5043283322 @default.
- W2147763277 creator A5043950818 @default.
- W2147763277 creator A5044340074 @default.
- W2147763277 creator A5047346473 @default.
- W2147763277 creator A5047686855 @default.
- W2147763277 creator A5058616554 @default.
- W2147763277 creator A5058806447 @default.
- W2147763277 creator A5066850001 @default.
- W2147763277 creator A5074383911 @default.
- W2147763277 creator A5083190234 @default.
- W2147763277 date "2010-10-13" @default.
- W2147763277 modified "2023-09-29" @default.
- W2147763277 title "<i>In silico</i> Modeling and <i>In vivo</i> Efficacy of Cancer-Preventive Vaccinations" @default.
- W2147763277 cites W1539819149 @default.
- W2147763277 cites W1969479016 @default.
- W2147763277 cites W1977082416 @default.
- W2147763277 cites W1977489896 @default.
- W2147763277 cites W1982683667 @default.
- W2147763277 cites W1983651655 @default.
- W2147763277 cites W1985558623 @default.
- W2147763277 cites W1996259893 @default.
- W2147763277 cites W2004673191 @default.
- W2147763277 cites W2011791635 @default.
- W2147763277 cites W2017712207 @default.
- W2147763277 cites W2019763427 @default.
- W2147763277 cites W2068441119 @default.
- W2147763277 cites W2074107830 @default.
- W2147763277 cites W2090996581 @default.
- W2147763277 cites W2109814401 @default.
- W2147763277 cites W2116094134 @default.
- W2147763277 cites W2125041286 @default.
- W2147763277 cites W2127697750 @default.
- W2147763277 cites W2128299880 @default.
- W2147763277 cites W2135954847 @default.
- W2147763277 cites W2145426305 @default.
- W2147763277 cites W2148139888 @default.
- W2147763277 cites W2168874985 @default.
- W2147763277 cites W2260225395 @default.
- W2147763277 cites W301739539 @default.
- W2147763277 cites W4250721899 @default.
- W2147763277 doi "https://doi.org/10.1158/0008-5472.can-10-0701" @default.
- W2147763277 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20924100" @default.
- W2147763277 hasPublicationYear "2010" @default.
- W2147763277 type Work @default.
- W2147763277 sameAs 2147763277 @default.
- W2147763277 citedByCount "78" @default.
- W2147763277 countsByYear W21477632772012 @default.
- W2147763277 countsByYear W21477632772013 @default.
- W2147763277 countsByYear W21477632772014 @default.
- W2147763277 countsByYear W21477632772015 @default.
- W2147763277 countsByYear W21477632772016 @default.
- W2147763277 countsByYear W21477632772017 @default.
- W2147763277 countsByYear W21477632772018 @default.
- W2147763277 countsByYear W21477632772019 @default.
- W2147763277 countsByYear W21477632772020 @default.
- W2147763277 countsByYear W21477632772021 @default.
- W2147763277 countsByYear W21477632772022 @default.
- W2147763277 countsByYear W21477632772023 @default.
- W2147763277 crossrefType "journal-article" @default.
- W2147763277 hasAuthorship W2147763277A5004388338 @default.
- W2147763277 hasAuthorship W2147763277A5013677367 @default.
- W2147763277 hasAuthorship W2147763277A5032993549 @default.
- W2147763277 hasAuthorship W2147763277A5034271408 @default.
- W2147763277 hasAuthorship W2147763277A5043283322 @default.
- W2147763277 hasAuthorship W2147763277A5043950818 @default.
- W2147763277 hasAuthorship W2147763277A5044340074 @default.
- W2147763277 hasAuthorship W2147763277A5047346473 @default.
- W2147763277 hasAuthorship W2147763277A5047686855 @default.
- W2147763277 hasAuthorship W2147763277A5058616554 @default.
- W2147763277 hasAuthorship W2147763277A5058806447 @default.
- W2147763277 hasAuthorship W2147763277A5066850001 @default.
- W2147763277 hasAuthorship W2147763277A5074383911 @default.
- W2147763277 hasAuthorship W2147763277A5083190234 @default.
- W2147763277 hasBestOaLocation W21477632772 @default.
- W2147763277 hasConcept C104317684 @default.
- W2147763277 hasConcept C121608353 @default.
- W2147763277 hasConcept C126322002 @default.
- W2147763277 hasConcept C150903083 @default.
- W2147763277 hasConcept C203014093 @default.
- W2147763277 hasConcept C207001950 @default.
- W2147763277 hasConcept C22070199 @default.
- W2147763277 hasConcept C2775905019 @default.
- W2147763277 hasConcept C2777701055 @default.
- W2147763277 hasConcept C2778378633 @default.
- W2147763277 hasConcept C2780441014 @default.
- W2147763277 hasConcept C55493867 @default.
- W2147763277 hasConcept C71924100 @default.
- W2147763277 hasConcept C86803240 @default.
- W2147763277 hasConcept C8891405 @default.
- W2147763277 hasConceptScore W2147763277C104317684 @default.
- W2147763277 hasConceptScore W2147763277C121608353 @default.
- W2147763277 hasConceptScore W2147763277C126322002 @default.