Matches in SemOpenAlex for { <https://semopenalex.org/work/W2147788440> ?p ?o ?g. }
- W2147788440 abstract "Cellular events play a central role in the understanding of biological processes and functions, providing insight on both physiological and pathogenesis mechanisms. Automatic extraction of mentions of such events from the literature represents an important contribution to the progress of the biomedical domain, allowing faster updating of existing knowledge. The identification of trigger words indicating an event is a very important step in the event extraction pipeline, since the following task(s) rely on its output. This step presents various complex and unsolved challenges, namely the selection of informative features, the representation of the textual context, and the selection of a specific event type for a trigger word given this context. We propose TrigNER, a machine learning-based solution for biomedical event trigger recognition, which takes advantage of Conditional Random Fields (CRFs) with a high-end feature set, including linguistic-based, orthographic, morphological, local context and dependency parsing features. Additionally, a completely configurable algorithm is used to automatically optimize the feature set and training parameters for each event type. Thus, it automatically selects the features that have a positive contribution and automatically optimizes the CRF model order, n-grams sizes, vertex information and maximum hops for dependency parsing features. The final output consists of various CRF models, each one optimized to the linguistic characteristics of each event type. TrigNER was tested in the BioNLP 2009 shared task corpus, achieving a total F-measure of 62.7 and outperforming existing solutions on various event trigger types, namely gene expression, transcription, protein catabolism, phosphorylation and binding. The proposed solution allows researchers to easily apply complex and optimized techniques in the recognition of biomedical event triggers, making its application a simple routine task. We believe this work is an important contribution to the biomedical text mining community, contributing to improved and faster event recognition on scientific articles, and consequent hypothesis generation and knowledge discovery. This solution is freely available as open source at http://bioinformatics.ua.pt/trigner ." @default.
- W2147788440 created "2016-06-24" @default.
- W2147788440 creator A5040524956 @default.
- W2147788440 creator A5059728213 @default.
- W2147788440 creator A5072967999 @default.
- W2147788440 creator A5073280030 @default.
- W2147788440 date "2014-01-08" @default.
- W2147788440 modified "2023-10-17" @default.
- W2147788440 title "TrigNER: automatically optimized biomedical event trigger recognition on scientific documents" @default.
- W2147788440 cites W1989375079 @default.
- W2147788440 cites W1992593537 @default.
- W2147788440 cites W2003185534 @default.
- W2147788440 cites W2048140075 @default.
- W2147788440 cites W2065963191 @default.
- W2147788440 cites W2088634345 @default.
- W2147788440 cites W2103017472 @default.
- W2147788440 cites W2108706252 @default.
- W2147788440 cites W2108791029 @default.
- W2147788440 cites W2148853951 @default.
- W2147788440 cites W2169528473 @default.
- W2147788440 doi "https://doi.org/10.1186/1751-0473-9-1" @default.
- W2147788440 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3896761" @default.
- W2147788440 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24401704" @default.
- W2147788440 hasPublicationYear "2014" @default.
- W2147788440 type Work @default.
- W2147788440 sameAs 2147788440 @default.
- W2147788440 citedByCount "18" @default.
- W2147788440 countsByYear W21477884402015 @default.
- W2147788440 countsByYear W21477884402016 @default.
- W2147788440 countsByYear W21477884402017 @default.
- W2147788440 countsByYear W21477884402018 @default.
- W2147788440 countsByYear W21477884402019 @default.
- W2147788440 countsByYear W21477884402020 @default.
- W2147788440 countsByYear W21477884402021 @default.
- W2147788440 countsByYear W21477884402023 @default.
- W2147788440 crossrefType "journal-article" @default.
- W2147788440 hasAuthorship W2147788440A5040524956 @default.
- W2147788440 hasAuthorship W2147788440A5059728213 @default.
- W2147788440 hasAuthorship W2147788440A5072967999 @default.
- W2147788440 hasAuthorship W2147788440A5073280030 @default.
- W2147788440 hasBestOaLocation W21477884401 @default.
- W2147788440 hasConcept C121332964 @default.
- W2147788440 hasConcept C151730666 @default.
- W2147788440 hasConcept C152565575 @default.
- W2147788440 hasConcept C153604712 @default.
- W2147788440 hasConcept C154945302 @default.
- W2147788440 hasConcept C162324750 @default.
- W2147788440 hasConcept C164883195 @default.
- W2147788440 hasConcept C165141518 @default.
- W2147788440 hasConcept C177264268 @default.
- W2147788440 hasConcept C186644900 @default.
- W2147788440 hasConcept C187736073 @default.
- W2147788440 hasConcept C195807954 @default.
- W2147788440 hasConcept C19768560 @default.
- W2147788440 hasConcept C199360897 @default.
- W2147788440 hasConcept C204321447 @default.
- W2147788440 hasConcept C2775953691 @default.
- W2147788440 hasConcept C2776461190 @default.
- W2147788440 hasConcept C2779135771 @default.
- W2147788440 hasConcept C2779343474 @default.
- W2147788440 hasConcept C2779662365 @default.
- W2147788440 hasConcept C2780451532 @default.
- W2147788440 hasConcept C41008148 @default.
- W2147788440 hasConcept C41608201 @default.
- W2147788440 hasConcept C43521106 @default.
- W2147788440 hasConcept C62520636 @default.
- W2147788440 hasConcept C71472368 @default.
- W2147788440 hasConcept C86803240 @default.
- W2147788440 hasConceptScore W2147788440C121332964 @default.
- W2147788440 hasConceptScore W2147788440C151730666 @default.
- W2147788440 hasConceptScore W2147788440C152565575 @default.
- W2147788440 hasConceptScore W2147788440C153604712 @default.
- W2147788440 hasConceptScore W2147788440C154945302 @default.
- W2147788440 hasConceptScore W2147788440C162324750 @default.
- W2147788440 hasConceptScore W2147788440C164883195 @default.
- W2147788440 hasConceptScore W2147788440C165141518 @default.
- W2147788440 hasConceptScore W2147788440C177264268 @default.
- W2147788440 hasConceptScore W2147788440C186644900 @default.
- W2147788440 hasConceptScore W2147788440C187736073 @default.
- W2147788440 hasConceptScore W2147788440C195807954 @default.
- W2147788440 hasConceptScore W2147788440C19768560 @default.
- W2147788440 hasConceptScore W2147788440C199360897 @default.
- W2147788440 hasConceptScore W2147788440C204321447 @default.
- W2147788440 hasConceptScore W2147788440C2775953691 @default.
- W2147788440 hasConceptScore W2147788440C2776461190 @default.
- W2147788440 hasConceptScore W2147788440C2779135771 @default.
- W2147788440 hasConceptScore W2147788440C2779343474 @default.
- W2147788440 hasConceptScore W2147788440C2779662365 @default.
- W2147788440 hasConceptScore W2147788440C2780451532 @default.
- W2147788440 hasConceptScore W2147788440C41008148 @default.
- W2147788440 hasConceptScore W2147788440C41608201 @default.
- W2147788440 hasConceptScore W2147788440C43521106 @default.
- W2147788440 hasConceptScore W2147788440C62520636 @default.
- W2147788440 hasConceptScore W2147788440C71472368 @default.
- W2147788440 hasConceptScore W2147788440C86803240 @default.
- W2147788440 hasIssue "1" @default.
- W2147788440 hasLocation W21477884401 @default.
- W2147788440 hasLocation W21477884402 @default.
- W2147788440 hasLocation W21477884403 @default.
- W2147788440 hasLocation W21477884404 @default.