Matches in SemOpenAlex for { <https://semopenalex.org/work/W2148002502> ?p ?o ?g. }
- W2148002502 endingPage "1021" @default.
- W2148002502 startingPage "1013" @default.
- W2148002502 abstract "Genetic association studies are generating much information, usually in the form of single nucleotide polymorphisms in candidate genes. Analyzing such data is challenging, and raises issues of multiple comparisons and potential false-positive associations. Using data from a case-control study of bladder cancer, we showed how to use hierarchical modeling in genetic epidemiologic studies with multiple markers to control overestimation of effects and potential false-positive associations.The data were first analyzed with the conventional approach of estimating each main effect individually. We subsequently employed hierarchical modeling by adding a second stage (prior) model that incorporated information on the potential function of the genes. We used an empirical-Bayes approach, estimating the residual effects of the genes from the data. When the residual effect was set to zero, we instead used a semi-Bayes approach, in which they were pre-specified. We also explored the impact of using different second-stage design matrices. Finally, we used two approaches for assessing gene-environment interactions. The first approach added product terms into the first-stage model. The second approach used three indicators for subjects exposed to gene-only, environment-only, and both genetic and environmental factors.By pre-specifying the prior second-stage covariates, the estimates were shrunk to the mean of each pathway. The conventional model detected a number of positive associations, which were reduced with the hierarchical model. For example, the odds ratio for myeloperoxidase (G/G, G/A) genotype changed from 3.17 [95% confidence interval (CI), 1.32-7.59] to 1.64 (95% CI, 0.81-3.34). A similar phenomenon was observed for the gene-environment interactions. The odds ratio for the gene-environment interaction between tobacco smoking and N-acetyltransferase 1 fast genotype was 2.74 (95% CI, 0.68-11.0) from the conventional analysis and 1.24 (95% CI, 0.80-1.93) from the hierarchical model.Adding a second-stage hierarchical modeling can reduce the likelihood of false positive via shrinkage toward the prior mean, improve the risk estimation by increasing the precision, and, therefore, represents an alternative to conventional methods for genetic association studies." @default.
- W2148002502 created "2016-06-24" @default.
- W2148002502 creator A5001258652 @default.
- W2148002502 creator A5011467039 @default.
- W2148002502 creator A5012116316 @default.
- W2148002502 creator A5017336844 @default.
- W2148002502 creator A5021007602 @default.
- W2148002502 creator A5035070420 @default.
- W2148002502 creator A5061561361 @default.
- W2148002502 date "2004-06-01" @default.
- W2148002502 modified "2023-10-17" @default.
- W2148002502 title "Using Hierarchical Modeling in Genetic Association Studies with Multiple Markers: Application to a Case-Control Study of Bladder Cancer" @default.
- W2148002502 cites W1974631994 @default.
- W2148002502 cites W1981892038 @default.
- W2148002502 cites W1993067220 @default.
- W2148002502 cites W1996395058 @default.
- W2148002502 cites W1997013992 @default.
- W2148002502 cites W2004799276 @default.
- W2148002502 cites W2017319763 @default.
- W2148002502 cites W2031967567 @default.
- W2148002502 cites W2032630769 @default.
- W2148002502 cites W2033335609 @default.
- W2148002502 cites W2045850572 @default.
- W2148002502 cites W2046436540 @default.
- W2148002502 cites W2063841367 @default.
- W2148002502 cites W2065435420 @default.
- W2148002502 cites W2071805611 @default.
- W2148002502 cites W2080867823 @default.
- W2148002502 cites W2083841608 @default.
- W2148002502 cites W2112120783 @default.
- W2148002502 cites W2138488540 @default.
- W2148002502 cites W2139003935 @default.
- W2148002502 cites W2146533390 @default.
- W2148002502 cites W2152850394 @default.
- W2148002502 cites W2404840908 @default.
- W2148002502 cites W3022896206 @default.
- W2148002502 cites W4296499091 @default.
- W2148002502 cites W77525823 @default.
- W2148002502 doi "https://doi.org/10.1158/1055-9965.1013.13.6" @default.
- W2148002502 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/15184258" @default.
- W2148002502 hasPublicationYear "2004" @default.
- W2148002502 type Work @default.
- W2148002502 sameAs 2148002502 @default.
- W2148002502 citedByCount "64" @default.
- W2148002502 countsByYear W21480025022012 @default.
- W2148002502 countsByYear W21480025022013 @default.
- W2148002502 countsByYear W21480025022014 @default.
- W2148002502 countsByYear W21480025022015 @default.
- W2148002502 countsByYear W21480025022016 @default.
- W2148002502 countsByYear W21480025022017 @default.
- W2148002502 countsByYear W21480025022018 @default.
- W2148002502 countsByYear W21480025022022 @default.
- W2148002502 crossrefType "journal-article" @default.
- W2148002502 hasAuthorship W2148002502A5001258652 @default.
- W2148002502 hasAuthorship W2148002502A5011467039 @default.
- W2148002502 hasAuthorship W2148002502A5012116316 @default.
- W2148002502 hasAuthorship W2148002502A5017336844 @default.
- W2148002502 hasAuthorship W2148002502A5021007602 @default.
- W2148002502 hasAuthorship W2148002502A5035070420 @default.
- W2148002502 hasAuthorship W2148002502A5061561361 @default.
- W2148002502 hasBestOaLocation W21480025021 @default.
- W2148002502 hasConcept C104317684 @default.
- W2148002502 hasConcept C105795698 @default.
- W2148002502 hasConcept C107673813 @default.
- W2148002502 hasConcept C119043178 @default.
- W2148002502 hasConcept C135763542 @default.
- W2148002502 hasConcept C153209595 @default.
- W2148002502 hasConcept C156957248 @default.
- W2148002502 hasConcept C183905921 @default.
- W2148002502 hasConcept C186413461 @default.
- W2148002502 hasConcept C191413810 @default.
- W2148002502 hasConcept C207201462 @default.
- W2148002502 hasConcept C33923547 @default.
- W2148002502 hasConcept C41008148 @default.
- W2148002502 hasConcept C44249647 @default.
- W2148002502 hasConcept C54355233 @default.
- W2148002502 hasConcept C70721500 @default.
- W2148002502 hasConcept C86803240 @default.
- W2148002502 hasConceptScore W2148002502C104317684 @default.
- W2148002502 hasConceptScore W2148002502C105795698 @default.
- W2148002502 hasConceptScore W2148002502C107673813 @default.
- W2148002502 hasConceptScore W2148002502C119043178 @default.
- W2148002502 hasConceptScore W2148002502C135763542 @default.
- W2148002502 hasConceptScore W2148002502C153209595 @default.
- W2148002502 hasConceptScore W2148002502C156957248 @default.
- W2148002502 hasConceptScore W2148002502C183905921 @default.
- W2148002502 hasConceptScore W2148002502C186413461 @default.
- W2148002502 hasConceptScore W2148002502C191413810 @default.
- W2148002502 hasConceptScore W2148002502C207201462 @default.
- W2148002502 hasConceptScore W2148002502C33923547 @default.
- W2148002502 hasConceptScore W2148002502C41008148 @default.
- W2148002502 hasConceptScore W2148002502C44249647 @default.
- W2148002502 hasConceptScore W2148002502C54355233 @default.
- W2148002502 hasConceptScore W2148002502C70721500 @default.
- W2148002502 hasConceptScore W2148002502C86803240 @default.
- W2148002502 hasIssue "6" @default.
- W2148002502 hasLocation W21480025021 @default.
- W2148002502 hasLocation W21480025022 @default.