Matches in SemOpenAlex for { <https://semopenalex.org/work/W2148028862> ?p ?o ?g. }
- W2148028862 endingPage "72" @default.
- W2148028862 startingPage "63" @default.
- W2148028862 abstract "During the past several years, near-infrared (near-IR/NIR) spectroscopy has increasingly been adopted as an analytical tool in various fields from petroleum to biomedical sectors. The NIR spectrum (above 4000 cm−1) of a sample is typically measured by modern instruments at a few hundred of wavelengths. Recently, considerable effort has been directed towards developing procedures to identify variables (wavelengths) that contribute useful information. Variable selection (VS) or feature selection, also called frequency selection or wavelength selection, is a critical step in data analysis for vibrational spectroscopy (infrared, Raman, or NIRS). In this paper, we compare the performance of 16 different feature selection methods for the prediction of properties of biodiesel fuel, including density, viscosity, methanol content, and water concentration. The feature selection algorithms tested include stepwise multiple linear regression (MLR-step), interval partial least squares regression (iPLS), backward iPLS (BiPLS), forward iPLS (FiPLS), moving window partial least squares regression (MWPLS), (modified) changeable size moving window partial least squares (CSMWPLS/MCSMWPLSR), searching combination moving window partial least squares (SCMWPLS), successive projections algorithm (SPA), uninformative variable elimination (UVE, including UVE-SPA), simulated annealing (SA), back-propagation artificial neural networks (BP-ANN), Kohonen artificial neural network (K-ANN), and genetic algorithms (GAs, including GA-iPLS). Two linear techniques for calibration model building, namely multiple linear regression (MLR) and partial least squares regression/projection to latent structures (PLS/PLSR), are used for the evaluation of biofuel properties. A comparison with a non-linear calibration model, artificial neural networks (ANN-MLP), is also provided. Discussion of gasoline, ethanol-gasoline (bioethanol), and diesel fuel data is presented. The results of other spectroscopic techniques application, such as Raman, ultraviolet-visible (UV-vis), or nuclear magnetic resonance (NMR) spectroscopies, can be greatly improved by an appropriate feature selection choice." @default.
- W2148028862 created "2016-06-24" @default.
- W2148028862 creator A5074125065 @default.
- W2148028862 creator A5076635409 @default.
- W2148028862 date "2011-04-01" @default.
- W2148028862 modified "2023-10-16" @default.
- W2148028862 title "Variable selection in near-infrared spectroscopy: Benchmarking of feature selection methods on biodiesel data" @default.
- W2148028862 cites W1964670723 @default.
- W2148028862 cites W1967083058 @default.
- W2148028862 cites W1971438030 @default.
- W2148028862 cites W1973105636 @default.
- W2148028862 cites W1982755765 @default.
- W2148028862 cites W1984973843 @default.
- W2148028862 cites W1985147596 @default.
- W2148028862 cites W1990717355 @default.
- W2148028862 cites W1990992764 @default.
- W2148028862 cites W1999803257 @default.
- W2148028862 cites W2003669114 @default.
- W2148028862 cites W2005248543 @default.
- W2148028862 cites W2006105117 @default.
- W2148028862 cites W2006959544 @default.
- W2148028862 cites W2007808016 @default.
- W2148028862 cites W2008965880 @default.
- W2148028862 cites W2009957961 @default.
- W2148028862 cites W2012696786 @default.
- W2148028862 cites W2014638889 @default.
- W2148028862 cites W2015099192 @default.
- W2148028862 cites W2015259293 @default.
- W2148028862 cites W2018633024 @default.
- W2148028862 cites W2019653773 @default.
- W2148028862 cites W2021754455 @default.
- W2148028862 cites W2024060531 @default.
- W2148028862 cites W2024509774 @default.
- W2148028862 cites W2030813953 @default.
- W2148028862 cites W2031783589 @default.
- W2148028862 cites W2033241587 @default.
- W2148028862 cites W2033342037 @default.
- W2148028862 cites W2034971291 @default.
- W2148028862 cites W2035995049 @default.
- W2148028862 cites W2037824009 @default.
- W2148028862 cites W2040019138 @default.
- W2148028862 cites W2042446090 @default.
- W2148028862 cites W2043076340 @default.
- W2148028862 cites W2047350373 @default.
- W2148028862 cites W2048329756 @default.
- W2148028862 cites W2050605378 @default.
- W2148028862 cites W2054996970 @default.
- W2148028862 cites W2055143789 @default.
- W2148028862 cites W2056363011 @default.
- W2148028862 cites W2057892688 @default.
- W2148028862 cites W2062086248 @default.
- W2148028862 cites W2062098797 @default.
- W2148028862 cites W2066487539 @default.
- W2148028862 cites W2068792062 @default.
- W2148028862 cites W2072291513 @default.
- W2148028862 cites W2073188277 @default.
- W2148028862 cites W2073298037 @default.
- W2148028862 cites W2074893062 @default.
- W2148028862 cites W2083428849 @default.
- W2148028862 cites W2084169316 @default.
- W2148028862 cites W2084559921 @default.
- W2148028862 cites W2086654639 @default.
- W2148028862 cites W2089886615 @default.
- W2148028862 cites W2094902234 @default.
- W2148028862 cites W2096131975 @default.
- W2148028862 cites W2100458127 @default.
- W2148028862 cites W2105503244 @default.
- W2148028862 cites W2139770740 @default.
- W2148028862 cites W2141007997 @default.
- W2148028862 cites W2146086675 @default.
- W2148028862 cites W2159959568 @default.
- W2148028862 cites W2163098267 @default.
- W2148028862 cites W4233258756 @default.
- W2148028862 cites W4237747158 @default.
- W2148028862 cites W4253169942 @default.
- W2148028862 doi "https://doi.org/10.1016/j.aca.2011.03.006" @default.
- W2148028862 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21501713" @default.
- W2148028862 hasPublicationYear "2011" @default.
- W2148028862 type Work @default.
- W2148028862 sameAs 2148028862 @default.
- W2148028862 citedByCount "335" @default.
- W2148028862 countsByYear W21480288622012 @default.
- W2148028862 countsByYear W21480288622013 @default.
- W2148028862 countsByYear W21480288622014 @default.
- W2148028862 countsByYear W21480288622015 @default.
- W2148028862 countsByYear W21480288622016 @default.
- W2148028862 countsByYear W21480288622017 @default.
- W2148028862 countsByYear W21480288622018 @default.
- W2148028862 countsByYear W21480288622019 @default.
- W2148028862 countsByYear W21480288622020 @default.
- W2148028862 countsByYear W21480288622021 @default.
- W2148028862 countsByYear W21480288622022 @default.
- W2148028862 countsByYear W21480288622023 @default.
- W2148028862 crossrefType "journal-article" @default.
- W2148028862 hasAuthorship W2148028862A5074125065 @default.
- W2148028862 hasAuthorship W2148028862A5076635409 @default.
- W2148028862 hasConcept C105795698 @default.
- W2148028862 hasConcept C119857082 @default.