Matches in SemOpenAlex for { <https://semopenalex.org/work/W2148182986> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2148182986 endingPage "82" @default.
- W2148182986 startingPage "36" @default.
- W2148182986 abstract "Categorizing Dictionary Information for a Lexical Database of Proper Names1 Muhammad Asadur Rahman University of West Georgia Martha Evens Illinois Institute of Technology Introduction mis paper describes the design and development of a lexical database containing about 55,000 records of information about proper nouns and their semantic relationships and odier features obtained mainly from the machine-readable version of the Collins English Dictionary. This database is designed to be used by parsing and text generation programs, especially question-answering systems . Our focus is on the classification of these entries. Since entries of different types contain very different kinds of information, these categories are fundamental to the design of the lexical database and the information extraction parser that analyzes the dictionary entries and builds the database records as it goes. This classification also helps the parsers and question-answering systems using the database interpret 'The authors would like to thank Collins Publishers and Patrick Hanks for giving their permission to use the Collins English Dictionary for research. Thanks also to the ACL Data Collection Initiative (DCI) for providing the researchers with die machine-readable version of the dictionary. We are also grateful for the valuable suggestions of an anonymous referee for this journal, who clearly invested much time and thought in this effort. Dictionaries:Journal ofthe Dictionary Soaety ofNorth America 27 (2006), 36-82 _______________Lexical Database of Proper Names______________37 the input text and the user questions and retrieve the relevant data. We include an evaluation of the database and a discussion of its limitations. Initial Motivation Texts cannot be understood without recognizing and understanding the proper names they contain. Each proper name is associated with some information that characterizes it. A computer needs this information in any kind of natural language application: text generation , text understanding, information retrieval, and especially question answering (Walker 1989). A lexical database can store this information in a suitable format for a computer. When we set out to build a lexical database in order to store proper name information, we chose the CollinsEnglishDictionary (hereafter , CED) because it had more information about proper names than any other machine-readable dictionary available at that point. We discovered that the information associated with different types of proper names varies tremendously, such that we needed different tables for different types of names. What is more, the question-answering systems that are the most immediate users of our database need relational information , and different types of proper nouns are involved in very different relationships (people have parents and professions, while countries have capital cities and languages spoken). Thus, categorization of proper names is a prerequisite to both database construction and question answering. Consider, by way of illustration, the following newswire text from the Associated Press: Tokyo close sharply higher, dollar lower By Associated Press, 4/22/2002 03:25 TOKYO (AP) Tokyo stocks rose sharply Monday, supported by Friday's advance on Wall Street. The dollar was lower against the yen. Meanwhile, Japanese Finance Minister Masajuro Shiokawa said in New York that the yen is likely to stay strong over the dollar. Shiokawa was among the finance ministers from the Group of Seven who attended a meeting in Washington . The G-7 includes the United States, Japan, Britain, France, Germany, Italy, and Canada. About 30% of the words in the above news article are proper nouns or their derivatives. Table 1 displays a list of the proper nouns in this article: 38 Muhammad Asadur Rahman and Martha Evens Table 1 List of Proper Names in the Newswire Article Tokyo Monday Friday Wall Street Japanese Finance Minister Masajuro Shiokawa New York Group ofSeven name of a city (capital) time related (day) time related (day) stock market (NYSE) a group of people (n, adj) a tide person name name of a city an economic forum Washington G-7 United States Japan Britain France Germany Italy Canada name of a city (capital) an acronym country name country name country name country name country name country name country name Note that several of the items listed in Table 1 are phrases. Proper name phrases are sequences of proper names with or without interleaved conjunctions, prepositions, or articles. They comprise a significant portion of written..." @default.
- W2148182986 created "2016-06-24" @default.
- W2148182986 creator A5010630663 @default.
- W2148182986 creator A5039008492 @default.
- W2148182986 date "2006-01-01" @default.
- W2148182986 modified "2023-10-17" @default.
- W2148182986 title "Categorizing Dictionary Information for a Lexical Database of Proper Names" @default.
- W2148182986 cites W1499061759 @default.
- W2148182986 cites W1554149234 @default.
- W2148182986 cites W1587514437 @default.
- W2148182986 cites W1607576325 @default.
- W2148182986 cites W174230968 @default.
- W2148182986 cites W1863262710 @default.
- W2148182986 cites W1941319617 @default.
- W2148182986 cites W1995287322 @default.
- W2148182986 cites W2038827463 @default.
- W2148182986 cites W2045577803 @default.
- W2148182986 cites W2045593168 @default.
- W2148182986 cites W2067854309 @default.
- W2148182986 cites W2127278109 @default.
- W2148182986 cites W2145310422 @default.
- W2148182986 cites W2156644463 @default.
- W2148182986 cites W2157954793 @default.
- W2148182986 cites W2184621758 @default.
- W2148182986 cites W2484928783 @default.
- W2148182986 cites W2764255325 @default.
- W2148182986 cites W56646212 @default.
- W2148182986 doi "https://doi.org/10.1353/dic.2006.0012" @default.
- W2148182986 hasPublicationYear "2006" @default.
- W2148182986 type Work @default.
- W2148182986 sameAs 2148182986 @default.
- W2148182986 citedByCount "1" @default.
- W2148182986 countsByYear W21481829862014 @default.
- W2148182986 crossrefType "journal-article" @default.
- W2148182986 hasAuthorship W2148182986A5010630663 @default.
- W2148182986 hasAuthorship W2148182986A5039008492 @default.
- W2148182986 hasConcept C121934690 @default.
- W2148182986 hasConcept C154945302 @default.
- W2148182986 hasConcept C157659113 @default.
- W2148182986 hasConcept C186644900 @default.
- W2148182986 hasConcept C204321447 @default.
- W2148182986 hasConcept C23123220 @default.
- W2148182986 hasConcept C2780403423 @default.
- W2148182986 hasConcept C41008148 @default.
- W2148182986 hasConcept C41417386 @default.
- W2148182986 hasConcept C44779857 @default.
- W2148182986 hasConcept C77088390 @default.
- W2148182986 hasConceptScore W2148182986C121934690 @default.
- W2148182986 hasConceptScore W2148182986C154945302 @default.
- W2148182986 hasConceptScore W2148182986C157659113 @default.
- W2148182986 hasConceptScore W2148182986C186644900 @default.
- W2148182986 hasConceptScore W2148182986C204321447 @default.
- W2148182986 hasConceptScore W2148182986C23123220 @default.
- W2148182986 hasConceptScore W2148182986C2780403423 @default.
- W2148182986 hasConceptScore W2148182986C41008148 @default.
- W2148182986 hasConceptScore W2148182986C41417386 @default.
- W2148182986 hasConceptScore W2148182986C44779857 @default.
- W2148182986 hasConceptScore W2148182986C77088390 @default.
- W2148182986 hasIssue "1" @default.
- W2148182986 hasLocation W21481829861 @default.
- W2148182986 hasOpenAccess W2148182986 @default.
- W2148182986 hasPrimaryLocation W21481829861 @default.
- W2148182986 hasRelatedWork W1546333591 @default.
- W2148182986 hasRelatedWork W169015136 @default.
- W2148182986 hasRelatedWork W1712321986 @default.
- W2148182986 hasRelatedWork W2076544657 @default.
- W2148182986 hasRelatedWork W2087671496 @default.
- W2148182986 hasRelatedWork W2103745285 @default.
- W2148182986 hasRelatedWork W2951890123 @default.
- W2148182986 hasRelatedWork W65938478 @default.
- W2148182986 hasRelatedWork W79801276 @default.
- W2148182986 hasRelatedWork W2128740662 @default.
- W2148182986 hasVolume "27" @default.
- W2148182986 isParatext "false" @default.
- W2148182986 isRetracted "false" @default.
- W2148182986 magId "2148182986" @default.
- W2148182986 workType "article" @default.