Matches in SemOpenAlex for { <https://semopenalex.org/work/W2148494023> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2148494023 abstract "When dealing with high-dimensional datasets with fewer samples, feature selection and ensemble learning are two effective strategies. In this paper, we focus our attention on genetic based feature selection for ensemble learning. We use an improved GA algorithm (IGA) to reduce the dimensionality of the feature space, and then evaluate using Bagging and Ada-Boost constructed by the reduced features. Experimental results on several UCI datasets demonstrate that the improved GA-based feature selection algorithm (IGAFS) is often able to obtain a better feature subset when compared with the standard GA-based feature selection algorithm (SGAFS). Our experiments also indicate that ensemble learning using IGAFS is more accuracy than employing SGAFS and the whole feature space in general conditions." @default.
- W2148494023 created "2016-06-24" @default.
- W2148494023 creator A5038418832 @default.
- W2148494023 creator A5046981277 @default.
- W2148494023 creator A5061819607 @default.
- W2148494023 date "2009-07-01" @default.
- W2148494023 modified "2023-09-26" @default.
- W2148494023 title "A GA-based feature selection and ensemble learning for high-dimensional datasets" @default.
- W2148494023 cites W1482784728 @default.
- W2148494023 cites W1496351645 @default.
- W2148494023 cites W1524450009 @default.
- W2148494023 cites W1545669252 @default.
- W2148494023 cites W1661871015 @default.
- W2148494023 cites W1990771923 @default.
- W2148494023 cites W2020355555 @default.
- W2148494023 cites W2093717447 @default.
- W2148494023 cites W2112076978 @default.
- W2148494023 cites W2113242816 @default.
- W2148494023 cites W2119479037 @default.
- W2148494023 cites W2135190479 @default.
- W2148494023 cites W28412257 @default.
- W2148494023 cites W2912934387 @default.
- W2148494023 cites W2976840617 @default.
- W2148494023 cites W3120740533 @default.
- W2148494023 cites W72904796 @default.
- W2148494023 cites W86016321 @default.
- W2148494023 doi "https://doi.org/10.1109/icmlc.2009.5212542" @default.
- W2148494023 hasPublicationYear "2009" @default.
- W2148494023 type Work @default.
- W2148494023 sameAs 2148494023 @default.
- W2148494023 citedByCount "3" @default.
- W2148494023 countsByYear W21484940232012 @default.
- W2148494023 countsByYear W21484940232015 @default.
- W2148494023 crossrefType "proceedings-article" @default.
- W2148494023 hasAuthorship W2148494023A5038418832 @default.
- W2148494023 hasAuthorship W2148494023A5046981277 @default.
- W2148494023 hasAuthorship W2148494023A5061819607 @default.
- W2148494023 hasConcept C111030470 @default.
- W2148494023 hasConcept C113238511 @default.
- W2148494023 hasConcept C119857082 @default.
- W2148494023 hasConcept C120665830 @default.
- W2148494023 hasConcept C121332964 @default.
- W2148494023 hasConcept C138885662 @default.
- W2148494023 hasConcept C148483581 @default.
- W2148494023 hasConcept C153180895 @default.
- W2148494023 hasConcept C154945302 @default.
- W2148494023 hasConcept C16811321 @default.
- W2148494023 hasConcept C192209626 @default.
- W2148494023 hasConcept C2776401178 @default.
- W2148494023 hasConcept C41008148 @default.
- W2148494023 hasConcept C41895202 @default.
- W2148494023 hasConcept C45942800 @default.
- W2148494023 hasConcept C52622490 @default.
- W2148494023 hasConcept C59404180 @default.
- W2148494023 hasConcept C70518039 @default.
- W2148494023 hasConcept C81917197 @default.
- W2148494023 hasConcept C83665646 @default.
- W2148494023 hasConcept C8880873 @default.
- W2148494023 hasConceptScore W2148494023C111030470 @default.
- W2148494023 hasConceptScore W2148494023C113238511 @default.
- W2148494023 hasConceptScore W2148494023C119857082 @default.
- W2148494023 hasConceptScore W2148494023C120665830 @default.
- W2148494023 hasConceptScore W2148494023C121332964 @default.
- W2148494023 hasConceptScore W2148494023C138885662 @default.
- W2148494023 hasConceptScore W2148494023C148483581 @default.
- W2148494023 hasConceptScore W2148494023C153180895 @default.
- W2148494023 hasConceptScore W2148494023C154945302 @default.
- W2148494023 hasConceptScore W2148494023C16811321 @default.
- W2148494023 hasConceptScore W2148494023C192209626 @default.
- W2148494023 hasConceptScore W2148494023C2776401178 @default.
- W2148494023 hasConceptScore W2148494023C41008148 @default.
- W2148494023 hasConceptScore W2148494023C41895202 @default.
- W2148494023 hasConceptScore W2148494023C45942800 @default.
- W2148494023 hasConceptScore W2148494023C52622490 @default.
- W2148494023 hasConceptScore W2148494023C59404180 @default.
- W2148494023 hasConceptScore W2148494023C70518039 @default.
- W2148494023 hasConceptScore W2148494023C81917197 @default.
- W2148494023 hasConceptScore W2148494023C83665646 @default.
- W2148494023 hasConceptScore W2148494023C8880873 @default.
- W2148494023 hasLocation W21484940231 @default.
- W2148494023 hasOpenAccess W2148494023 @default.
- W2148494023 hasPrimaryLocation W21484940231 @default.
- W2148494023 hasRelatedWork W133811800 @default.
- W2148494023 hasRelatedWork W1535435873 @default.
- W2148494023 hasRelatedWork W1965771882 @default.
- W2148494023 hasRelatedWork W2095834362 @default.
- W2148494023 hasRelatedWork W2148494023 @default.
- W2148494023 hasRelatedWork W2286904880 @default.
- W2148494023 hasRelatedWork W2772780115 @default.
- W2148494023 hasRelatedWork W3207278327 @default.
- W2148494023 hasRelatedWork W3211035526 @default.
- W2148494023 hasRelatedWork W4285007828 @default.
- W2148494023 isParatext "false" @default.
- W2148494023 isRetracted "false" @default.
- W2148494023 magId "2148494023" @default.
- W2148494023 workType "article" @default.