Matches in SemOpenAlex for { <https://semopenalex.org/work/W2148984976> ?p ?o ?g. }
- W2148984976 endingPage "18" @default.
- W2148984976 startingPage "8" @default.
- W2148984976 abstract "Combined Fe, C, and O isotope measurements of ~ 2.5 Ga banded iron formation (BIF) carbonates from the Kuruman Iron Formation and underlying BIF and platform Ca–Mg carbonates of the Gamohaan Formation, South Africa, constrain the biologic and abiologic formation pathways in these extensive BIF deposits. Vertical intervals of up to 100 m were sampled in three cores that cover a lateral extent of ~ 250 km. BIF Fe carbonates have significant Fe isotope variability (δ56Fe = + 1 to − 1‰) and relatively low δ13C (down to − 12‰) and δ18O values (δ18O ~ + 21‰). In contrast, Gamohaan and stratigraphically-equivalent Campbellrand Ca–Mg carbonates have near-zero δ13C values and higher δ18O values. These findings argue against siderite precipitation from seawater as the origin of BIF Fe-rich carbonates. Instead, the C, O, and Fe isotope compositions of BIF Fe carbonates reflect authigenic pathways of formation in the sedimentary pile prior to lithification, where microbial dissimilatory iron reduction (DIR) was the major process that controlled the C, O, and Fe isotope compositions of siderite. Isotope mass-balance reactions indicate that the low-δ13C and low-δ18O values of BIF siderite, relative to those expected for precipitation from seawater, reflect inheritance of C and O isotope compositions of precursor organic carbon and ferric hydroxide that were generated in the photic zone and deposited on the seafloor. Carbon–Fe isotope relations suggest that BIF Fe carbonates formed through two end-member pathways: low-δ13C, low-δ56Fe Fe carbonates formed from remobilized, low-δ56Fe aqueous Fe2+ produced by partial DIR of iron oxide, whereas low-δ13C, high-δ56Fe Fe carbonates formed by near-complete DIR of high-δ56Fe iron oxides that were residual from prior partial DIR. An important observation is the common occurrence of iron oxide inclusions in the high-δ56Fe siderite, supporting a model where such compositions reflect DIR “in place” in the soft sediment. In contrast, the isotopic composition of low-Fe carbonates in limestone/dolomite may constitute a record of seawater environments, although our petrographic studies indicate that the presence of pyrite in most low-Fe carbonates may influence the Fe isotope compositions. The combined Fe, C, and O isotope data from Kuruman BIF carbonates indicate that BIF siderites that have negative, near-zero, or positive δ56Fe values may all record biological Fe cycling, where the range in δ56Fe values records differential Fe mobilization via DIR in the sediment prior to lithification. Our results demonstrate that the inventory of low-δ56Fe marine sedimentary rocks of Neoarchean to Paleoproterozoic age, although impressive in volume, may represent only a minimum of the total inventory of Fe that was cycled by bacteria." @default.
- W2148984976 created "2016-06-24" @default.
- W2148984976 creator A5000007230 @default.
- W2148984976 creator A5032863816 @default.
- W2148984976 creator A5051560428 @default.
- W2148984976 creator A5061204636 @default.
- W2148984976 creator A5082153682 @default.
- W2148984976 creator A5089448675 @default.
- W2148984976 creator A5089956992 @default.
- W2148984976 date "2010-05-01" @default.
- W2148984976 modified "2023-10-06" @default.
- W2148984976 title "Fe, C, and O isotope compositions of banded iron formation carbonates demonstrate a major role for dissimilatory iron reduction in ~2.5Ga marine environments" @default.
- W2148984976 cites W1524457547 @default.
- W2148984976 cites W1967199319 @default.
- W2148984976 cites W1969594792 @default.
- W2148984976 cites W1969906605 @default.
- W2148984976 cites W1970487134 @default.
- W2148984976 cites W1970658925 @default.
- W2148984976 cites W1974884380 @default.
- W2148984976 cites W1975346732 @default.
- W2148984976 cites W1978052340 @default.
- W2148984976 cites W1984055345 @default.
- W2148984976 cites W1984854172 @default.
- W2148984976 cites W1994212233 @default.
- W2148984976 cites W1996339982 @default.
- W2148984976 cites W1996532001 @default.
- W2148984976 cites W1997958287 @default.
- W2148984976 cites W2007458249 @default.
- W2148984976 cites W2009888423 @default.
- W2148984976 cites W2010269231 @default.
- W2148984976 cites W2016379558 @default.
- W2148984976 cites W2017913935 @default.
- W2148984976 cites W2019795776 @default.
- W2148984976 cites W2020579560 @default.
- W2148984976 cites W2022530129 @default.
- W2148984976 cites W2028590108 @default.
- W2148984976 cites W2029025852 @default.
- W2148984976 cites W2030996811 @default.
- W2148984976 cites W2031096014 @default.
- W2148984976 cites W2031938583 @default.
- W2148984976 cites W2032136888 @default.
- W2148984976 cites W2033267677 @default.
- W2148984976 cites W2033480865 @default.
- W2148984976 cites W2033986829 @default.
- W2148984976 cites W2035866696 @default.
- W2148984976 cites W2038602179 @default.
- W2148984976 cites W2040185618 @default.
- W2148984976 cites W2042372974 @default.
- W2148984976 cites W2042760382 @default.
- W2148984976 cites W2047189232 @default.
- W2148984976 cites W2049691903 @default.
- W2148984976 cites W2050474635 @default.
- W2148984976 cites W2052099565 @default.
- W2148984976 cites W2066340240 @default.
- W2148984976 cites W2066710100 @default.
- W2148984976 cites W2071983566 @default.
- W2148984976 cites W2074667643 @default.
- W2148984976 cites W2074751239 @default.
- W2148984976 cites W2076321104 @default.
- W2148984976 cites W2081542730 @default.
- W2148984976 cites W2086855277 @default.
- W2148984976 cites W2088263140 @default.
- W2148984976 cites W2090076848 @default.
- W2148984976 cites W2090887314 @default.
- W2148984976 cites W2094732368 @default.
- W2148984976 cites W2097386376 @default.
- W2148984976 cites W2103820702 @default.
- W2148984976 cites W2109410203 @default.
- W2148984976 cites W2114310663 @default.
- W2148984976 cites W2121536019 @default.
- W2148984976 cites W2128185490 @default.
- W2148984976 cites W2130723340 @default.
- W2148984976 cites W2138460429 @default.
- W2148984976 cites W2139633475 @default.
- W2148984976 cites W2145685810 @default.
- W2148984976 cites W2148319192 @default.
- W2148984976 cites W2148346745 @default.
- W2148984976 cites W2148739779 @default.
- W2148984976 cites W2150753243 @default.
- W2148984976 cites W2154518799 @default.
- W2148984976 cites W2155190299 @default.
- W2148984976 cites W2155256780 @default.
- W2148984976 cites W2160554494 @default.
- W2148984976 cites W2162395880 @default.
- W2148984976 cites W2163858301 @default.
- W2148984976 cites W2169641074 @default.
- W2148984976 cites W2171500660 @default.
- W2148984976 cites W4250897673 @default.
- W2148984976 doi "https://doi.org/10.1016/j.epsl.2010.02.015" @default.
- W2148984976 hasPublicationYear "2010" @default.
- W2148984976 type Work @default.
- W2148984976 sameAs 2148984976 @default.
- W2148984976 citedByCount "200" @default.
- W2148984976 countsByYear W21489849762012 @default.
- W2148984976 countsByYear W21489849762013 @default.
- W2148984976 countsByYear W21489849762014 @default.
- W2148984976 countsByYear W21489849762015 @default.
- W2148984976 countsByYear W21489849762016 @default.