Matches in SemOpenAlex for { <https://semopenalex.org/work/W2148991981> ?p ?o ?g. }
- W2148991981 endingPage "860" @default.
- W2148991981 startingPage "835" @default.
- W2148991981 abstract "The Baiyinnuo’er zinc-lead deposit (32.74 Mt at 5.44% Zn, 2.02% Pb, and 31.36 g/t Ag), located in the south segment of the Great Xing’an Range, is the largest Zn-Pb deposit in northern China. Skarn and orebodies mainly occur between the different units of the Huanggangliang Formation, or within the contact zone between the intrusions and Permian marble.Several phases of igneous rocks exposed within the mining areas, and among them the Yanshanian plutonic rocks, which intruded into limestone of the early Permian Huanggangliang Formation, are interpreted to be the source of ore, since their Pb isotope compositions (206Pb/204Pb = 18.25–18.35, 207Pb/204Pb = 15.50–15.56, and 208Pb/204Pb = 38.14–38.32) are highly consistent with the sulfides, including sphalerite, galena, and chalcopyrite (206Pb/204Pb = 18.23–18.37, 207Pb/204Pb = 15.47–15.62, and 208Pb/204Pb = 37.93–38.44). Sulfur isotope values of the sulfides give a narrow δ 34S interval of −6.1 to −4.6‰ (mean = −5.4‰, n = 15), suggesting the ore-forming fluid is of magmatic origin.Three main paragenetic stages of skarn formation and ore deposition have been recognized based on petrographic observation, which are the preore stage (garnet-clinpyroxene-wollastonite-magnetite ± sulfides), the synore stage (sulfides-epidote-quartz-calcite ± garnet), and the postore stage (calcite-chlorite-quartz-fluorite). Several fluid evolution episodes can be inferred from microthermometric results at the Baiyinnuo’er Zn-Pb deposit: 1. Immiscibility: Preore-stage coexistence of halite-bearing brine inclusions (S1-type, ~44 wt % NaCl equiv) and vapor-rich fluid inclusions (V-type) sharing the same homogenization temperatures (~470°C) confirms that fluid unmixing occurred under lithostatic pressures of ~400 bars (~1.5 km), and the brine is considered to account for most prograde skarn minerals (e.g., clinopyroxene).2. Overpressure trapping: Preore-stage brine inclusions homogenized by halite dissolution (S2-type) postdated the immiscible assemblages. This type of inclusions is characterized by high but variable (minimum) trapping pressures (150–3,000 bars) relative to S1-type inclusions and can be explained as a result of entrapment under overpressuring condition.3. Boiling: The presence of both vapor and liquid inclusions (i.e., V- and L-type) in the same assemblages within synore-stage quartz, calcite, and sphalerite indicates the occurrence of fluid boiling (~350°C), at hydrostatic pressures of ~150 bars, and depth of ~1.5 km), which resulted in large-scale mineralization in the Baiyinnuo’er Zn-Pb deposit.4. Mixing with external fluids: Fluid inclusions scattered within postore-stage calcite or secondary trails in synore-stage minerals show low homogenization temperatures (<260°C) and both decreasing (for L-type) and increasing (for CaCl2-bearing inclusions, i.e., Lc-type) trends for salinities as homogenization temperatures decrease, implying addition of both meteoric water (low-temperature, low-salinity) and basinal brines (low-temperature, Ca-rich), respectively.Systematic fluid inclusion studies also indicate that the mineralization-related fluid is of magmatic origin. Prograde minerals formed during the preore-stage fluid immiscibility while sulfides deposition occurred during the synore-stage fluid boiling. Mixing with external fluids began as the hydrothermal system cooled to <300°C, when the main metal precipitation process had ended." @default.
- W2148991981 created "2016-06-24" @default.
- W2148991981 creator A5005919986 @default.
- W2148991981 creator A5010299264 @default.
- W2148991981 creator A5047273213 @default.
- W2148991981 creator A5055838753 @default.
- W2148991981 creator A5058611234 @default.
- W2148991981 date "2013-05-02" @default.
- W2148991981 modified "2023-10-06" @default.
- W2148991981 title "Ore Genesis and Hydrothermal Evolution of the Baiyinnuo'er Zinc-Lead Skarn Deposit, Northeast China: Evidence from Isotopes (S, Pb) and Fluid Inclusions" @default.
- W2148991981 cites W1535539135 @default.
- W2148991981 cites W1964432997 @default.
- W2148991981 cites W1967827341 @default.
- W2148991981 cites W1974569905 @default.
- W2148991981 cites W1977577306 @default.
- W2148991981 cites W1977741939 @default.
- W2148991981 cites W1977870256 @default.
- W2148991981 cites W1982383011 @default.
- W2148991981 cites W1986234848 @default.
- W2148991981 cites W1986560096 @default.
- W2148991981 cites W1988557437 @default.
- W2148991981 cites W1990287569 @default.
- W2148991981 cites W1991534665 @default.
- W2148991981 cites W1998591819 @default.
- W2148991981 cites W2001376647 @default.
- W2148991981 cites W2001772043 @default.
- W2148991981 cites W2005781914 @default.
- W2148991981 cites W2008989233 @default.
- W2148991981 cites W2018968693 @default.
- W2148991981 cites W2020161194 @default.
- W2148991981 cites W2020724233 @default.
- W2148991981 cites W2030484090 @default.
- W2148991981 cites W2035003573 @default.
- W2148991981 cites W2043191555 @default.
- W2148991981 cites W2044512571 @default.
- W2148991981 cites W2044537972 @default.
- W2148991981 cites W2044853578 @default.
- W2148991981 cites W2046430531 @default.
- W2148991981 cites W2051829209 @default.
- W2148991981 cites W2053444229 @default.
- W2148991981 cites W2053658624 @default.
- W2148991981 cites W2053678543 @default.
- W2148991981 cites W2054765896 @default.
- W2148991981 cites W2056734066 @default.
- W2148991981 cites W2067047049 @default.
- W2148991981 cites W2069370400 @default.
- W2148991981 cites W2075738151 @default.
- W2148991981 cites W2075959024 @default.
- W2148991981 cites W2076514410 @default.
- W2148991981 cites W2077214987 @default.
- W2148991981 cites W2080523684 @default.
- W2148991981 cites W2083691222 @default.
- W2148991981 cites W2085717916 @default.
- W2148991981 cites W2086708452 @default.
- W2148991981 cites W2088374037 @default.
- W2148991981 cites W2088522209 @default.
- W2148991981 cites W2102879515 @default.
- W2148991981 cites W2131732871 @default.
- W2148991981 cites W2138449422 @default.
- W2148991981 cites W2140093647 @default.
- W2148991981 cites W2142502409 @default.
- W2148991981 cites W2160102246 @default.
- W2148991981 cites W2164264866 @default.
- W2148991981 cites W2170770997 @default.
- W2148991981 cites W2171743302 @default.
- W2148991981 cites W2317337219 @default.
- W2148991981 cites W2350212914 @default.
- W2148991981 cites W2352320853 @default.
- W2148991981 cites W2358994267 @default.
- W2148991981 cites W2367942156 @default.
- W2148991981 cites W2369038424 @default.
- W2148991981 cites W2373922286 @default.
- W2148991981 cites W2377535736 @default.
- W2148991981 cites W2386733078 @default.
- W2148991981 cites W2430044558 @default.
- W2148991981 cites W2797914455 @default.
- W2148991981 cites W2897983685 @default.
- W2148991981 cites W2980495961 @default.
- W2148991981 cites W3129872018 @default.
- W2148991981 cites W3149621910 @default.
- W2148991981 doi "https://doi.org/10.2113/econgeo.108.4.835" @default.
- W2148991981 hasPublicationYear "2013" @default.
- W2148991981 type Work @default.
- W2148991981 sameAs 2148991981 @default.
- W2148991981 citedByCount "153" @default.
- W2148991981 countsByYear W21489919812013 @default.
- W2148991981 countsByYear W21489919812014 @default.
- W2148991981 countsByYear W21489919812015 @default.
- W2148991981 countsByYear W21489919812016 @default.
- W2148991981 countsByYear W21489919812017 @default.
- W2148991981 countsByYear W21489919812018 @default.
- W2148991981 countsByYear W21489919812019 @default.
- W2148991981 countsByYear W21489919812020 @default.
- W2148991981 countsByYear W21489919812021 @default.
- W2148991981 countsByYear W21489919812022 @default.
- W2148991981 countsByYear W21489919812023 @default.
- W2148991981 crossrefType "journal-article" @default.
- W2148991981 hasAuthorship W2148991981A5005919986 @default.