Matches in SemOpenAlex for { <https://semopenalex.org/work/W2149022021> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2149022021 endingPage "11" @default.
- W2149022021 startingPage "4" @default.
- W2149022021 abstract "accurate prediction of the range, payload, and operational economy of conventional, V/STOL, and supersonic jet aircraft, accurate knowledge of the velocity and discharge coefficients of the exhaust nozzle and the variation of these coefficients with nozzle pressure ratio is required. The need for high accuracy has become increasingly important because of the higher gross-to-net thrust ratios of today's high-bypass ratio turbofan engines and tomorrow's advanced supersonic jet engines. These high gross-to-net thrust ratios have the effect of greatly magnifying errors made in the prediction of the nozzle velocity coefficient. For example, studies of a Mach 2.2 supersonic transport aircraft conducted at the Douglas Aircraft Company have shown that a 1% variation in the nozzle thrust coefficient results in a 3.1% change in the direct operating cost of the airplane and a 2.3797o change in the specific fuel consumption. Thus, the analytical calculations that are used to provide initial design information, to guide the modification of existing nozzles, and to identify geometries for detailed experimental testing must be as accurate as possible. In addition, the wide variety of nozzle configurations that are now being considered dictates that the analytical methods must be flexible in the geometries that they can handle, and economic constraints dictate that the methods must be fast from the standpoint of computer time. In order to have a chance of developing an analytical method with good computational economy, it is necessary to exclude from consideration those phenomena which exercise a secondary effect on nozzle performance. Therefore, unless specifically mentioned, the methods considered in this paper will be restricted to those capable only of solving the problems of two-dimensional (planar or axisymmetric) isentropic (inviscid and shock-free) flow of a perfect gas. Because of the high pressure ratios at which modern jet engines operate, it is necessary that analytical methods be capable of handling mixed flows, that is, flows in which both subsonic and supersonic flow regions are present. Methods that are capable of treating such problems are commonly called transonic flow methods because there are regions where the flow is sonic and near sonic. Because nozzle analysis methods must have this capability, the method of characteristics will not be discussed (since it is limited to supersonic flows), nor will methods that are appropriate only for subsonic flows (such as the methods of classical hydrodynamics). Despite the mixed (subsonic-supersonic) nature of the flowfield, much progress has been made in recent years in the development of methods of solution appropriate for propulsion nozzle analysis. As an indication of this, the recent bibliography of Newman and Allison can be cited which, although restricted to external transonic flow problems, contains over 650 entries. Indeed one finds, as eloquently expressed by Murphy^ that methods of obtaining numerical solutions of the equations of fluid flow have proliferated to the point where the number of different methods nearly equals the number of active workers in the field. Clearly against such a background, it is impossible to pretend that the survey presented here is complete. It is not the intention nor even the inclination of the authors to present a complete listing of all transonic nozzle analysis methods. The purpose of this survey, rather, is to classify and present critical com-" @default.
- W2149022021 created "2016-06-24" @default.
- W2149022021 creator A5046245602 @default.
- W2149022021 creator A5089375639 @default.
- W2149022021 date "1976-01-01" @default.
- W2149022021 modified "2023-09-27" @default.
- W2149022021 title "Survey of Methods for Exhaust-Nozzle Flow Analysis" @default.
- W2149022021 cites W1504497791 @default.
- W2149022021 cites W1561741448 @default.
- W2149022021 cites W1563937549 @default.
- W2149022021 cites W1647138976 @default.
- W2149022021 cites W1662383490 @default.
- W2149022021 cites W1967490438 @default.
- W2149022021 cites W1988928719 @default.
- W2149022021 cites W1989315532 @default.
- W2149022021 cites W1990709188 @default.
- W2149022021 cites W2006605085 @default.
- W2149022021 cites W2015791353 @default.
- W2149022021 cites W2016197259 @default.
- W2149022021 cites W2016522892 @default.
- W2149022021 cites W2016950805 @default.
- W2149022021 cites W2018769877 @default.
- W2149022021 cites W2024130091 @default.
- W2149022021 cites W2029611560 @default.
- W2149022021 cites W2033597220 @default.
- W2149022021 cites W2074940018 @default.
- W2149022021 cites W2077812507 @default.
- W2149022021 cites W2088774205 @default.
- W2149022021 cites W2090814048 @default.
- W2149022021 cites W2091049289 @default.
- W2149022021 cites W2128814279 @default.
- W2149022021 cites W2144645721 @default.
- W2149022021 cites W2158206394 @default.
- W2149022021 cites W2164036342 @default.
- W2149022021 cites W2167409709 @default.
- W2149022021 cites W35582188 @default.
- W2149022021 doi "https://doi.org/10.2514/3.58623" @default.
- W2149022021 hasPublicationYear "1976" @default.
- W2149022021 type Work @default.
- W2149022021 sameAs 2149022021 @default.
- W2149022021 citedByCount "9" @default.
- W2149022021 crossrefType "journal-article" @default.
- W2149022021 hasAuthorship W2149022021A5046245602 @default.
- W2149022021 hasAuthorship W2149022021A5089375639 @default.
- W2149022021 hasConcept C121332964 @default.
- W2149022021 hasConcept C127413603 @default.
- W2149022021 hasConcept C146978453 @default.
- W2149022021 hasConcept C171146098 @default.
- W2149022021 hasConcept C178802073 @default.
- W2149022021 hasConcept C199104240 @default.
- W2149022021 hasConcept C38349280 @default.
- W2149022021 hasConcept C39432304 @default.
- W2149022021 hasConcept C41008148 @default.
- W2149022021 hasConcept C56200935 @default.
- W2149022021 hasConcept C57879066 @default.
- W2149022021 hasConceptScore W2149022021C121332964 @default.
- W2149022021 hasConceptScore W2149022021C127413603 @default.
- W2149022021 hasConceptScore W2149022021C146978453 @default.
- W2149022021 hasConceptScore W2149022021C171146098 @default.
- W2149022021 hasConceptScore W2149022021C178802073 @default.
- W2149022021 hasConceptScore W2149022021C199104240 @default.
- W2149022021 hasConceptScore W2149022021C38349280 @default.
- W2149022021 hasConceptScore W2149022021C39432304 @default.
- W2149022021 hasConceptScore W2149022021C41008148 @default.
- W2149022021 hasConceptScore W2149022021C56200935 @default.
- W2149022021 hasConceptScore W2149022021C57879066 @default.
- W2149022021 hasIssue "1" @default.
- W2149022021 hasLocation W21490220211 @default.
- W2149022021 hasOpenAccess W2149022021 @default.
- W2149022021 hasPrimaryLocation W21490220211 @default.
- W2149022021 hasRelatedWork W2036821711 @default.
- W2149022021 hasRelatedWork W2055670726 @default.
- W2149022021 hasRelatedWork W2065823042 @default.
- W2149022021 hasRelatedWork W2090380862 @default.
- W2149022021 hasRelatedWork W2147371409 @default.
- W2149022021 hasRelatedWork W2357089371 @default.
- W2149022021 hasRelatedWork W2381349623 @default.
- W2149022021 hasRelatedWork W2394330189 @default.
- W2149022021 hasRelatedWork W2899084033 @default.
- W2149022021 hasRelatedWork W4205739128 @default.
- W2149022021 hasVolume "13" @default.
- W2149022021 isParatext "false" @default.
- W2149022021 isRetracted "false" @default.
- W2149022021 magId "2149022021" @default.
- W2149022021 workType "article" @default.