Matches in SemOpenAlex for { <https://semopenalex.org/work/W2149059730> ?p ?o ?g. }
- W2149059730 endingPage "121" @default.
- W2149059730 startingPage "111" @default.
- W2149059730 abstract "Here we proposed an automatic segmentation method based on a decision tree to classify the brain tissues in magnetic resonance (MR) images. Two types of data – phantom MR images obtained from IBSR (http://www.cma.mgh.harvard.edu/ibsr) and simulated brain MR images obtained from BrainWeb (http://www.bic.mni.mcgill.ca/brainweb) – were segmented using an automatic decision tree algorithm to obtain images with improved visual rendition. Spatial information on the general gray level (G), spatial gray level (S), and two-dimensional wavelet transform (W) was combined in-plane in two coordinate systems (Euclidean coordinates (x, y) or polar coordinates (r, θ)). The decision tree was constructed based on a binary tree with nodes created by splitting the distribution of input features of the tree. The spatial information obtained from MR images with different noise levels and inhomogeneities were segmented to compare whether the use of a decision tree improved the identification of human anatomical structures in a neuroimage. The average accuracy rates of segmentation for phantom images with a noise variation of 15 gray levels were 0.9999 and 0.9973 with spatial information (G, x, y, r, θ) and (S, x, y, r, θ), respectively, and 0.9999 and 0.9819 with spatial information (G, x, y, S, r, θ) and (W, x, y, G, r, θ). The average accuracy rates of segmentation for simulated MR images with a noise level of 5% were 0.9532 and 0.9439 with spatial information (G, x, y, r, θ) and (S, x, y, r, θ), respectively, and 0.9446 and 0.9287 with spatial information (G, x, y, S, r, θ) and (W, x, y, G, r, θ). The accuracy rates of segmentation were highest for both simulated phantom and brain MR images, having the lowest noise levels, from a reduction of overlapping gray levels in the images. The accuracies of segmentation were higher when the spatial information included the general gray level than when it included the spatial gray level, which in turn were higher than when it included the wavelet transform. Furthermore, the performance of segmentation was also evaluated with a boundary detection methodology that is based on the Hausdorff distance to compare with the mean computer to observer difference (COD) and mean interobserver difference (IOD) for gray matter (GM), white matter (WM), and all areas (ALL) from images segmented using the decision tree. The values of mean COD are similar and around 12 mm for GM segmented using the decision tree. Our segmentation method based on a decision tree algorithm presented an easy way to perform automatic segmentation for both phantom and tissue regions in brain MR images." @default.
- W2149059730 created "2016-06-24" @default.
- W2149059730 creator A5022705979 @default.
- W2149059730 creator A5056781404 @default.
- W2149059730 creator A5074818451 @default.
- W2149059730 creator A5082514988 @default.
- W2149059730 creator A5090692388 @default.
- W2149059730 date "2009-03-01" @default.
- W2149059730 modified "2023-09-26" @default.
- W2149059730 title "Automatic segmentation of magnetic resonance images using a decision tree with spatial information" @default.
- W2149059730 cites W1493305082 @default.
- W2149059730 cites W1594031697 @default.
- W2149059730 cites W1969031137 @default.
- W2149059730 cites W1976276865 @default.
- W2149059730 cites W1988748524 @default.
- W2149059730 cites W1998568814 @default.
- W2149059730 cites W2004063975 @default.
- W2149059730 cites W2011162772 @default.
- W2149059730 cites W2011252469 @default.
- W2149059730 cites W2025976607 @default.
- W2149059730 cites W2035736092 @default.
- W2149059730 cites W2042331641 @default.
- W2149059730 cites W2045404628 @default.
- W2149059730 cites W2050240050 @default.
- W2149059730 cites W2055481055 @default.
- W2149059730 cites W2059846849 @default.
- W2149059730 cites W2064328569 @default.
- W2149059730 cites W2066362296 @default.
- W2149059730 cites W2075077983 @default.
- W2149059730 cites W2085829822 @default.
- W2149059730 cites W2098069737 @default.
- W2149059730 cites W2102860796 @default.
- W2149059730 cites W2105202736 @default.
- W2149059730 cites W2116291699 @default.
- W2149059730 cites W2116895317 @default.
- W2149059730 cites W2117253478 @default.
- W2149059730 cites W2124565667 @default.
- W2149059730 cites W2126217333 @default.
- W2149059730 cites W2133568575 @default.
- W2149059730 cites W2135365788 @default.
- W2149059730 cites W2137063708 @default.
- W2149059730 cites W2150606601 @default.
- W2149059730 cites W2155278882 @default.
- W2149059730 cites W2169267889 @default.
- W2149059730 cites W2799061466 @default.
- W2149059730 cites W3085162807 @default.
- W2149059730 doi "https://doi.org/10.1016/j.compmedimag.2008.10.008" @default.
- W2149059730 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19097854" @default.
- W2149059730 hasPublicationYear "2009" @default.
- W2149059730 type Work @default.
- W2149059730 sameAs 2149059730 @default.
- W2149059730 citedByCount "19" @default.
- W2149059730 countsByYear W21490597302012 @default.
- W2149059730 countsByYear W21490597302014 @default.
- W2149059730 countsByYear W21490597302017 @default.
- W2149059730 countsByYear W21490597302019 @default.
- W2149059730 countsByYear W21490597302021 @default.
- W2149059730 countsByYear W21490597302022 @default.
- W2149059730 crossrefType "journal-article" @default.
- W2149059730 hasAuthorship W2149059730A5022705979 @default.
- W2149059730 hasAuthorship W2149059730A5056781404 @default.
- W2149059730 hasAuthorship W2149059730A5074818451 @default.
- W2149059730 hasAuthorship W2149059730A5082514988 @default.
- W2149059730 hasAuthorship W2149059730A5090692388 @default.
- W2149059730 hasConcept C104293457 @default.
- W2149059730 hasConcept C113174947 @default.
- W2149059730 hasConcept C114614502 @default.
- W2149059730 hasConcept C120665830 @default.
- W2149059730 hasConcept C121332964 @default.
- W2149059730 hasConcept C124504099 @default.
- W2149059730 hasConcept C126838900 @default.
- W2149059730 hasConcept C143409427 @default.
- W2149059730 hasConcept C153180895 @default.
- W2149059730 hasConcept C154945302 @default.
- W2149059730 hasConcept C2524010 @default.
- W2149059730 hasConcept C31972630 @default.
- W2149059730 hasConcept C33923547 @default.
- W2149059730 hasConcept C40069579 @default.
- W2149059730 hasConcept C41008148 @default.
- W2149059730 hasConcept C71924100 @default.
- W2149059730 hasConcept C84525736 @default.
- W2149059730 hasConcept C89600930 @default.
- W2149059730 hasConceptScore W2149059730C104293457 @default.
- W2149059730 hasConceptScore W2149059730C113174947 @default.
- W2149059730 hasConceptScore W2149059730C114614502 @default.
- W2149059730 hasConceptScore W2149059730C120665830 @default.
- W2149059730 hasConceptScore W2149059730C121332964 @default.
- W2149059730 hasConceptScore W2149059730C124504099 @default.
- W2149059730 hasConceptScore W2149059730C126838900 @default.
- W2149059730 hasConceptScore W2149059730C143409427 @default.
- W2149059730 hasConceptScore W2149059730C153180895 @default.
- W2149059730 hasConceptScore W2149059730C154945302 @default.
- W2149059730 hasConceptScore W2149059730C2524010 @default.
- W2149059730 hasConceptScore W2149059730C31972630 @default.
- W2149059730 hasConceptScore W2149059730C33923547 @default.
- W2149059730 hasConceptScore W2149059730C40069579 @default.
- W2149059730 hasConceptScore W2149059730C41008148 @default.
- W2149059730 hasConceptScore W2149059730C71924100 @default.