Matches in SemOpenAlex for { <https://semopenalex.org/work/W2149129969> ?p ?o ?g. }
- W2149129969 endingPage "1012" @default.
- W2149129969 startingPage "981" @default.
- W2149129969 abstract "We study the geometric properties of holomorphic distributions of totally null m-planes on a (2m+ϵ)-dimensional complex Riemannian manifold (M,g), where ϵ∈{0,1} and m≥2. In particular, given such a distribution N, say, we obtain algebraic conditions on the Weyl tensor and the Cotton–York tensor which guarantee the integrability of N, and in odd dimensions, of its orthogonal complement. These results generalise the Petrov classification of the (anti-)self-dual part of the complex Weyl tensor, and the complex Goldberg–Sachs theorem from four to higher dimensions. Higher-dimensional analogues of the Petrov type D condition are defined, and we show that these lead to the integrability of up to 2m holomorphic distributions of totally null m-planes. Finally, we adapt these findings to the category of real smooth pseudo-Riemannian manifolds, commenting notably on the applications to Hermitian geometry and Robinson (or optical) geometry." @default.
- W2149129969 created "2016-06-24" @default.
- W2149129969 creator A5059470992 @default.
- W2149129969 date "2012-05-01" @default.
- W2149129969 modified "2023-09-24" @default.
- W2149129969 title "The complex Goldberg–Sachs theorem in higher dimensions" @default.
- W2149129969 cites W1789645782 @default.
- W2149129969 cites W1995175492 @default.
- W2149129969 cites W2007171634 @default.
- W2149129969 cites W2013028811 @default.
- W2149129969 cites W2015767969 @default.
- W2149129969 cites W2015860712 @default.
- W2149129969 cites W2042423607 @default.
- W2149129969 cites W2050407647 @default.
- W2149129969 cites W2058989680 @default.
- W2149129969 cites W2067469003 @default.
- W2149129969 cites W2069599511 @default.
- W2149129969 cites W2070543670 @default.
- W2149129969 cites W2070977588 @default.
- W2149129969 cites W2073862476 @default.
- W2149129969 cites W2078644744 @default.
- W2149129969 cites W2078899360 @default.
- W2149129969 cites W2080535283 @default.
- W2149129969 cites W2081649538 @default.
- W2149129969 cites W2083243799 @default.
- W2149129969 cites W2091549656 @default.
- W2149129969 cites W2094499821 @default.
- W2149129969 cites W2111150190 @default.
- W2149129969 cites W2118856039 @default.
- W2149129969 cites W2120081324 @default.
- W2149129969 cites W2139420267 @default.
- W2149129969 cites W2153744753 @default.
- W2149129969 cites W2162155301 @default.
- W2149129969 cites W2277680008 @default.
- W2149129969 cites W2329882467 @default.
- W2149129969 cites W2482638577 @default.
- W2149129969 cites W2510375645 @default.
- W2149129969 cites W3100239184 @default.
- W2149129969 cites W3101038980 @default.
- W2149129969 cites W591280313 @default.
- W2149129969 doi "https://doi.org/10.1016/j.geomphys.2012.01.012" @default.
- W2149129969 hasPublicationYear "2012" @default.
- W2149129969 type Work @default.
- W2149129969 sameAs 2149129969 @default.
- W2149129969 citedByCount "20" @default.
- W2149129969 countsByYear W21491299692012 @default.
- W2149129969 countsByYear W21491299692013 @default.
- W2149129969 countsByYear W21491299692014 @default.
- W2149129969 countsByYear W21491299692015 @default.
- W2149129969 countsByYear W21491299692016 @default.
- W2149129969 countsByYear W21491299692017 @default.
- W2149129969 countsByYear W21491299692019 @default.
- W2149129969 countsByYear W21491299692020 @default.
- W2149129969 countsByYear W21491299692021 @default.
- W2149129969 countsByYear W21491299692023 @default.
- W2149129969 crossrefType "journal-article" @default.
- W2149129969 hasAuthorship W2149129969A5059470992 @default.
- W2149129969 hasBestOaLocation W21491299692 @default.
- W2149129969 hasConcept C104317684 @default.
- W2149129969 hasConcept C110121322 @default.
- W2149129969 hasConcept C112313634 @default.
- W2149129969 hasConcept C127413603 @default.
- W2149129969 hasConcept C127716648 @default.
- W2149129969 hasConcept C134306372 @default.
- W2149129969 hasConcept C155281189 @default.
- W2149129969 hasConcept C183517385 @default.
- W2149129969 hasConcept C185592680 @default.
- W2149129969 hasConcept C188082640 @default.
- W2149129969 hasConcept C195065555 @default.
- W2149129969 hasConcept C198959055 @default.
- W2149129969 hasConcept C202444582 @default.
- W2149129969 hasConcept C203763787 @default.
- W2149129969 hasConcept C204575570 @default.
- W2149129969 hasConcept C21511379 @default.
- W2149129969 hasConcept C2524010 @default.
- W2149129969 hasConcept C2779593128 @default.
- W2149129969 hasConcept C33923547 @default.
- W2149129969 hasConcept C41008148 @default.
- W2149129969 hasConcept C529865628 @default.
- W2149129969 hasConcept C55493867 @default.
- W2149129969 hasConcept C77088390 @default.
- W2149129969 hasConcept C78519656 @default.
- W2149129969 hasConcept C94940 @default.
- W2149129969 hasConceptScore W2149129969C104317684 @default.
- W2149129969 hasConceptScore W2149129969C110121322 @default.
- W2149129969 hasConceptScore W2149129969C112313634 @default.
- W2149129969 hasConceptScore W2149129969C127413603 @default.
- W2149129969 hasConceptScore W2149129969C127716648 @default.
- W2149129969 hasConceptScore W2149129969C134306372 @default.
- W2149129969 hasConceptScore W2149129969C155281189 @default.
- W2149129969 hasConceptScore W2149129969C183517385 @default.
- W2149129969 hasConceptScore W2149129969C185592680 @default.
- W2149129969 hasConceptScore W2149129969C188082640 @default.
- W2149129969 hasConceptScore W2149129969C195065555 @default.
- W2149129969 hasConceptScore W2149129969C198959055 @default.
- W2149129969 hasConceptScore W2149129969C202444582 @default.
- W2149129969 hasConceptScore W2149129969C203763787 @default.
- W2149129969 hasConceptScore W2149129969C204575570 @default.