Matches in SemOpenAlex for { <https://semopenalex.org/work/W2149134893> ?p ?o ?g. }
- W2149134893 endingPage "e75542" @default.
- W2149134893 startingPage "e75542" @default.
- W2149134893 abstract "Predicting protein functional classes such as localization sites and modifications plays a crucial role in function annotation. Given a tremendous amount of sequence data yielded from high-throughput sequencing experiments, the need of efficient and interpretable prediction strategies has been rapidly amplified. Our previous approach for subcellular localization prediction, PSLDoc, archives high overall accuracy for Gram-negative bacteria. However, PSLDoc is computational intensive due to incorporation of homology extension in feature extraction and probabilistic latent semantic analysis in feature reduction. Besides, prediction results generated by support vector machines are accurate but generally difficult to interpret. In this work, we incorporate three new techniques to improve efficiency and interpretability. First, homology extension is performed against a compact non-redundant database using a fast search model to reduce running time. Second, correspondence analysis (CA) is incorporated as an efficient feature reduction to generate a clear visual separation of different protein classes. Finally, functional classes are predicted by a combination of accurate compact set (CS) relation and interpretable one-nearest neighbor (1-NN) algorithm. Besides localization data sets, we also apply a human protein kinase set to validate generality of our proposed method. Experiment results demonstrate that our method make accurate prediction in a more efficient and interpretable manner. First, homology extension using a fast search on a compact database can greatly accelerate traditional running time up to twenty-five times faster without sacrificing prediction performance. This suggests that computational costs of many other predictors that also incorporate homology information can be largely reduced. In addition, CA can not only efficiently identify discriminative features but also provide a clear visualization of different functional classes. Moreover, predictions based on CS achieve 100% precision. When combined with 1-NN on unpredicted targets by CS, our method attains slightly better or comparable performance compared with the state-of-the-art systems." @default.
- W2149134893 created "2016-06-24" @default.
- W2149134893 creator A5007504298 @default.
- W2149134893 creator A5011281958 @default.
- W2149134893 creator A5046538238 @default.
- W2149134893 creator A5047039788 @default.
- W2149134893 creator A5050690507 @default.
- W2149134893 creator A5058332830 @default.
- W2149134893 creator A5081102186 @default.
- W2149134893 creator A5085000737 @default.
- W2149134893 date "2013-10-11" @default.
- W2149134893 modified "2023-10-06" @default.
- W2149134893 title "Efficient and Interpretable Prediction of Protein Functional Classes by Correspondence Analysis and Compact Set Relations" @default.
- W2149134893 cites W1511433968 @default.
- W2149134893 cites W1963496351 @default.
- W2149134893 cites W1973253766 @default.
- W2149134893 cites W1981005463 @default.
- W2149134893 cites W1991929674 @default.
- W2149134893 cites W1995924392 @default.
- W2149134893 cites W2001702665 @default.
- W2149134893 cites W2008544906 @default.
- W2149134893 cites W2021723309 @default.
- W2149134893 cites W2030205108 @default.
- W2149134893 cites W2043291082 @default.
- W2149134893 cites W2045787860 @default.
- W2149134893 cites W2046946959 @default.
- W2149134893 cites W2061974355 @default.
- W2149134893 cites W2076048958 @default.
- W2149134893 cites W2082314188 @default.
- W2149134893 cites W2089047063 @default.
- W2149134893 cites W2091654745 @default.
- W2149134893 cites W2094201044 @default.
- W2149134893 cites W2097020631 @default.
- W2149134893 cites W2097694646 @default.
- W2149134893 cites W2101466114 @default.
- W2149134893 cites W2111823792 @default.
- W2149134893 cites W2134731454 @default.
- W2149134893 cites W2142893109 @default.
- W2149134893 cites W2147461064 @default.
- W2149134893 cites W2152688507 @default.
- W2149134893 cites W2153187042 @default.
- W2149134893 cites W2158173168 @default.
- W2149134893 cites W2161257366 @default.
- W2149134893 cites W2162792752 @default.
- W2149134893 cites W2169432731 @default.
- W2149134893 cites W4295216797 @default.
- W2149134893 doi "https://doi.org/10.1371/journal.pone.0075542" @default.
- W2149134893 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3795737" @default.
- W2149134893 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24146760" @default.
- W2149134893 hasPublicationYear "2013" @default.
- W2149134893 type Work @default.
- W2149134893 sameAs 2149134893 @default.
- W2149134893 citedByCount "7" @default.
- W2149134893 countsByYear W21491348932015 @default.
- W2149134893 countsByYear W21491348932016 @default.
- W2149134893 countsByYear W21491348932019 @default.
- W2149134893 countsByYear W21491348932020 @default.
- W2149134893 countsByYear W21491348932022 @default.
- W2149134893 crossrefType "journal-article" @default.
- W2149134893 hasAuthorship W2149134893A5007504298 @default.
- W2149134893 hasAuthorship W2149134893A5011281958 @default.
- W2149134893 hasAuthorship W2149134893A5046538238 @default.
- W2149134893 hasAuthorship W2149134893A5047039788 @default.
- W2149134893 hasAuthorship W2149134893A5050690507 @default.
- W2149134893 hasAuthorship W2149134893A5058332830 @default.
- W2149134893 hasAuthorship W2149134893A5081102186 @default.
- W2149134893 hasAuthorship W2149134893A5085000737 @default.
- W2149134893 hasBestOaLocation W21491348931 @default.
- W2149134893 hasConcept C104317684 @default.
- W2149134893 hasConcept C11413529 @default.
- W2149134893 hasConcept C119857082 @default.
- W2149134893 hasConcept C12267149 @default.
- W2149134893 hasConcept C124101348 @default.
- W2149134893 hasConcept C153180895 @default.
- W2149134893 hasConcept C154945302 @default.
- W2149134893 hasConcept C207060522 @default.
- W2149134893 hasConcept C2781067378 @default.
- W2149134893 hasConcept C2874115 @default.
- W2149134893 hasConcept C2986374874 @default.
- W2149134893 hasConcept C41008148 @default.
- W2149134893 hasConcept C49937458 @default.
- W2149134893 hasConcept C55493867 @default.
- W2149134893 hasConcept C86803240 @default.
- W2149134893 hasConceptScore W2149134893C104317684 @default.
- W2149134893 hasConceptScore W2149134893C11413529 @default.
- W2149134893 hasConceptScore W2149134893C119857082 @default.
- W2149134893 hasConceptScore W2149134893C12267149 @default.
- W2149134893 hasConceptScore W2149134893C124101348 @default.
- W2149134893 hasConceptScore W2149134893C153180895 @default.
- W2149134893 hasConceptScore W2149134893C154945302 @default.
- W2149134893 hasConceptScore W2149134893C207060522 @default.
- W2149134893 hasConceptScore W2149134893C2781067378 @default.
- W2149134893 hasConceptScore W2149134893C2874115 @default.
- W2149134893 hasConceptScore W2149134893C2986374874 @default.
- W2149134893 hasConceptScore W2149134893C41008148 @default.
- W2149134893 hasConceptScore W2149134893C49937458 @default.
- W2149134893 hasConceptScore W2149134893C55493867 @default.
- W2149134893 hasConceptScore W2149134893C86803240 @default.