Matches in SemOpenAlex for { <https://semopenalex.org/work/W2149140280> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2149140280 abstract "This thesis contains work on three separate topics, but with common themes running throughout. These themes are drawn together in the asymmetric exclusion process (ASEP) – a stochastic process describing particles hopping on a one-dimensional lattice. The open boundary ASEP is set on a finite length lattice, with particles entering and exiting at both boundaries. The transition matrix of the open boundary ASEP provides a representation of the two boundary Temperley–Lieb algebra, and the integrability of the system allows the diagonalisation of the transition matrix through the Bethe ansatz method. We study the ASEP in the reverse bias regime, where the boundary injection and extraction rates oppose the preferred direction of flow in the bulk. We find the exact asymptotic relaxation rate along the coexistence line by analysing solutions of the Bethe equations. The Bethe equations are first solved numerically, then the form of the resulting root distribution is used as the basis for an asymptotic analysis. The reverse bias induces the appearance of isolated roots, which introduces a modified length scale in the system. We describe the careful treatment of the isolated roots that is required in both the numerical procedure, and in the asymptotic analysis. The second topic of this thesis is the study of a priority queueing system, modelled as an exclusion process with moving boundaries. We call this model the prioritising exclusion process (PEP). In the PEP, the hopping of particles corresponds to high priority customers overtaking low priority customers in order to gain service sooner. Although the PEP is not integrable, techniques from the ASEP allow calculation of exact density profiles in certain phases, and the calculation of approximate average waiting times when the expected queue length is finite. The final topic of this thesis is a study of polynomial solutions of a q-deformed Knizhnik–Zamolodchikov (qKZ) equation with mixed boundaries. The qKZ equation studied here is given in terms of the one boundary Temperley–Lieb algebra, and its solutions have a factorised form in terms of Baxterized elements of the type B Hecke algebra. We find an integral form for certain components of the qKZ solution, along with" @default.
- W2149140280 created "2016-06-24" @default.
- W2149140280 creator A5063436145 @default.
- W2149140280 date "2015-08-19" @default.
- W2149140280 modified "2023-10-16" @default.
- W2149140280 title "ONE-DIMENSIONAL STOCHASTIC MODELS WITH OPEN BOUNDARIES: INTEGRABILITY, APPLICATIONS AND -DEFORMED KNIZHNIK–ZAMOLODCHIKOV EQUATIONS" @default.
- W2149140280 cites W1975957285 @default.
- W2149140280 cites W2047840281 @default.
- W2149140280 cites W2099369599 @default.
- W2149140280 cites W2127522328 @default.
- W2149140280 cites W3106328790 @default.
- W2149140280 cites W4213265037 @default.
- W2149140280 doi "https://doi.org/10.1017/s0004972715001033" @default.
- W2149140280 hasPublicationYear "2015" @default.
- W2149140280 type Work @default.
- W2149140280 sameAs 2149140280 @default.
- W2149140280 citedByCount "0" @default.
- W2149140280 crossrefType "journal-article" @default.
- W2149140280 hasAuthorship W2149140280A5063436145 @default.
- W2149140280 hasBestOaLocation W21491402801 @default.
- W2149140280 hasConcept C105795698 @default.
- W2149140280 hasConcept C121332964 @default.
- W2149140280 hasConcept C121864883 @default.
- W2149140280 hasConcept C134306372 @default.
- W2149140280 hasConcept C182310444 @default.
- W2149140280 hasConcept C200741047 @default.
- W2149140280 hasConcept C24890656 @default.
- W2149140280 hasConcept C2781204021 @default.
- W2149140280 hasConcept C2781281476 @default.
- W2149140280 hasConcept C33923547 @default.
- W2149140280 hasConcept C62354387 @default.
- W2149140280 hasConcept C77843276 @default.
- W2149140280 hasConceptScore W2149140280C105795698 @default.
- W2149140280 hasConceptScore W2149140280C121332964 @default.
- W2149140280 hasConceptScore W2149140280C121864883 @default.
- W2149140280 hasConceptScore W2149140280C134306372 @default.
- W2149140280 hasConceptScore W2149140280C182310444 @default.
- W2149140280 hasConceptScore W2149140280C200741047 @default.
- W2149140280 hasConceptScore W2149140280C24890656 @default.
- W2149140280 hasConceptScore W2149140280C2781204021 @default.
- W2149140280 hasConceptScore W2149140280C2781281476 @default.
- W2149140280 hasConceptScore W2149140280C33923547 @default.
- W2149140280 hasConceptScore W2149140280C62354387 @default.
- W2149140280 hasConceptScore W2149140280C77843276 @default.
- W2149140280 hasLocation W21491402801 @default.
- W2149140280 hasOpenAccess W2149140280 @default.
- W2149140280 hasPrimaryLocation W21491402801 @default.
- W2149140280 hasRelatedWork W1646566277 @default.
- W2149140280 hasRelatedWork W1664750689 @default.
- W2149140280 hasRelatedWork W2014844427 @default.
- W2149140280 hasRelatedWork W2026745826 @default.
- W2149140280 hasRelatedWork W2050805107 @default.
- W2149140280 hasRelatedWork W2058307389 @default.
- W2149140280 hasRelatedWork W2071585784 @default.
- W2149140280 hasRelatedWork W2142707909 @default.
- W2149140280 hasRelatedWork W2160348251 @default.
- W2149140280 hasRelatedWork W2482249623 @default.
- W2149140280 hasRelatedWork W2531187803 @default.
- W2149140280 hasRelatedWork W2948218175 @default.
- W2149140280 hasRelatedWork W2963432938 @default.
- W2149140280 hasRelatedWork W3012762890 @default.
- W2149140280 hasRelatedWork W3013037262 @default.
- W2149140280 hasRelatedWork W3098700255 @default.
- W2149140280 hasRelatedWork W3099643358 @default.
- W2149140280 hasRelatedWork W3160059706 @default.
- W2149140280 hasRelatedWork W3187323293 @default.
- W2149140280 hasRelatedWork W2015594630 @default.
- W2149140280 isParatext "false" @default.
- W2149140280 isRetracted "false" @default.
- W2149140280 magId "2149140280" @default.
- W2149140280 workType "article" @default.