Matches in SemOpenAlex for { <https://semopenalex.org/work/W2149160726> ?p ?o ?g. }
- W2149160726 endingPage "666" @default.
- W2149160726 startingPage "657" @default.
- W2149160726 abstract "The toxic effects of ultrafine particles (UFP) are a public health concern. However, epidemiological studies on the long term effects of UFP are limited due to lacking exposure models. Given the high spatial variation of UFP, the assignment of exposure levels in epidemiological studies requires a fine spatial scale. The aim of this study was to assess the performance of a short-term measurement protocol used at a large number of locations to derive a land use regression (LUR) model of the spatial variation of UFP in Girona, Spain. We measured UFP for 15 min on the sidewalk of 644 participants’ homes in 12 towns of Girona province (Spain). The measurements were done during non-rush traffic hours 9:15–12:45 and 15:15–16:45 during 32 days between June 15 and July 31, 2009. In parallel, we counted the number of vehicles driving in both directions. Measurements were repeated on a different day for a subset of 25 sites in Girona city. Potential predictor variables such as building density, distance to bus lines and land cover were derived using geographic information systems. We adjusted for temporal variation using daily mean NOx concentrations at a central monitor. Land use regression models for the entire area (Core model) and for individual towns were derived using a supervised forward selection algorithm. The best predictors of UFP were traffic intensity, distance to nearest major crossroad, area of high density residential land and household density. The LUR Core model explained 36% of UFP total variation. Adding sampling date and hour of the day to the Core model increased the R2 to 51% without changing the regression slopes. Local models included predictor variables similar to those in the Core model, but performed better with an R2 of 50% in Girona city. Independent LUR models for the first and second measurements at the subset of sites with repetitions had R2’s of about 47%. When the mean of the two measurements was used R2 improved to 72%. LUR models for UFP were developed, based on a highly cost-effective short-term monitoring campaign at a large number of sites, with fair performance. Complementing the approach with further strategies to address sources of temporal variation of UFP is likely to result in improved models as indicated by the good performance of the model based on the subset of sites with one repeated measurement. Our approach is promising for UFP and possibly for other PM components requiring active sampling." @default.
- W2149160726 created "2016-06-24" @default.
- W2149160726 creator A5025394086 @default.
- W2149160726 creator A5027340392 @default.
- W2149160726 creator A5028700984 @default.
- W2149160726 creator A5036339824 @default.
- W2149160726 creator A5036536970 @default.
- W2149160726 creator A5038307516 @default.
- W2149160726 creator A5060515495 @default.
- W2149160726 creator A5063534091 @default.
- W2149160726 creator A5071196001 @default.
- W2149160726 creator A5091639251 @default.
- W2149160726 date "2012-07-01" @default.
- W2149160726 modified "2023-09-27" @default.
- W2149160726 title "Spatial distribution of ultrafine particles in urban settings: A land use regression model" @default.
- W2149160726 cites W2002685456 @default.
- W2149160726 cites W2004508083 @default.
- W2149160726 cites W2006607055 @default.
- W2149160726 cites W2008596714 @default.
- W2149160726 cites W2009911166 @default.
- W2149160726 cites W2022337207 @default.
- W2149160726 cites W2027716247 @default.
- W2149160726 cites W2029395610 @default.
- W2149160726 cites W2038511719 @default.
- W2149160726 cites W2040066643 @default.
- W2149160726 cites W2062132337 @default.
- W2149160726 cites W2065947772 @default.
- W2149160726 cites W2069190606 @default.
- W2149160726 cites W2070191323 @default.
- W2149160726 cites W2074900660 @default.
- W2149160726 cites W2094492025 @default.
- W2149160726 cites W2098637521 @default.
- W2149160726 cites W2105065756 @default.
- W2149160726 cites W2109559748 @default.
- W2149160726 cites W2136915828 @default.
- W2149160726 cites W2143321926 @default.
- W2149160726 cites W2149006857 @default.
- W2149160726 cites W2150751323 @default.
- W2149160726 cites W2166604768 @default.
- W2149160726 cites W2316634239 @default.
- W2149160726 doi "https://doi.org/10.1016/j.atmosenv.2012.01.058" @default.
- W2149160726 hasPublicationYear "2012" @default.
- W2149160726 type Work @default.
- W2149160726 sameAs 2149160726 @default.
- W2149160726 citedByCount "93" @default.
- W2149160726 countsByYear W21491607262013 @default.
- W2149160726 countsByYear W21491607262014 @default.
- W2149160726 countsByYear W21491607262015 @default.
- W2149160726 countsByYear W21491607262016 @default.
- W2149160726 countsByYear W21491607262017 @default.
- W2149160726 countsByYear W21491607262018 @default.
- W2149160726 countsByYear W21491607262019 @default.
- W2149160726 countsByYear W21491607262020 @default.
- W2149160726 countsByYear W21491607262021 @default.
- W2149160726 countsByYear W21491607262022 @default.
- W2149160726 countsByYear W21491607262023 @default.
- W2149160726 crossrefType "journal-article" @default.
- W2149160726 hasAuthorship W2149160726A5025394086 @default.
- W2149160726 hasAuthorship W2149160726A5027340392 @default.
- W2149160726 hasAuthorship W2149160726A5028700984 @default.
- W2149160726 hasAuthorship W2149160726A5036339824 @default.
- W2149160726 hasAuthorship W2149160726A5036536970 @default.
- W2149160726 hasAuthorship W2149160726A5038307516 @default.
- W2149160726 hasAuthorship W2149160726A5060515495 @default.
- W2149160726 hasAuthorship W2149160726A5063534091 @default.
- W2149160726 hasAuthorship W2149160726A5071196001 @default.
- W2149160726 hasAuthorship W2149160726A5091639251 @default.
- W2149160726 hasConcept C100970517 @default.
- W2149160726 hasConcept C105795698 @default.
- W2149160726 hasConcept C127413603 @default.
- W2149160726 hasConcept C147176958 @default.
- W2149160726 hasConcept C150032891 @default.
- W2149160726 hasConcept C152877465 @default.
- W2149160726 hasConcept C153294291 @default.
- W2149160726 hasConcept C167272206 @default.
- W2149160726 hasConcept C198408306 @default.
- W2149160726 hasConcept C205649164 @default.
- W2149160726 hasConcept C2777016058 @default.
- W2149160726 hasConcept C2780648208 @default.
- W2149160726 hasConcept C2910321205 @default.
- W2149160726 hasConcept C33923547 @default.
- W2149160726 hasConcept C39432304 @default.
- W2149160726 hasConcept C41008148 @default.
- W2149160726 hasConcept C42360764 @default.
- W2149160726 hasConcept C4792198 @default.
- W2149160726 hasConcept C48921125 @default.
- W2149160726 hasConcept C62649853 @default.
- W2149160726 hasConcept C76155785 @default.
- W2149160726 hasConcept C94747663 @default.
- W2149160726 hasConceptScore W2149160726C100970517 @default.
- W2149160726 hasConceptScore W2149160726C105795698 @default.
- W2149160726 hasConceptScore W2149160726C127413603 @default.
- W2149160726 hasConceptScore W2149160726C147176958 @default.
- W2149160726 hasConceptScore W2149160726C150032891 @default.
- W2149160726 hasConceptScore W2149160726C152877465 @default.
- W2149160726 hasConceptScore W2149160726C153294291 @default.
- W2149160726 hasConceptScore W2149160726C167272206 @default.
- W2149160726 hasConceptScore W2149160726C198408306 @default.