Matches in SemOpenAlex for { <https://semopenalex.org/work/W2149183242> ?p ?o ?g. }
- W2149183242 endingPage "3507" @default.
- W2149183242 startingPage "3491" @default.
- W2149183242 abstract "This paper examines the application of neural networks (NN) to reliability-based structural optimization of large-scale structural systems. The failure of the structural system is associated with the plastic collapse. The optimization part is performed with evolution strategies, while the reliability analysis is carried out with the Monte Carlo simulation (MCS) method incorporating the importance sampling technique for the reduction of the sample size. In this study two methodologies are examined. In the first one an NN is trained to perform both the deterministic and probabilistic constraints check. In the second one only the elasto-plastic analysis phase, required by the MCS, is replaced by a neural network prediction of the structural behaviour up to collapse. The use of NN is motivated by the approximate concepts inherent in reliability analysis and the time consuming repeated analyses required by MCS." @default.
- W2149183242 created "2016-06-24" @default.
- W2149183242 creator A5010593826 @default.
- W2149183242 creator A5078374061 @default.
- W2149183242 date "2002-06-01" @default.
- W2149183242 modified "2023-10-11" @default.
- W2149183242 title "Reliability-based structural optimization using neural networks and Monte Carlo simulation" @default.
- W2149183242 cites W1969987345 @default.
- W2149183242 cites W1975829566 @default.
- W2149183242 cites W1978626680 @default.
- W2149183242 cites W1987207923 @default.
- W2149183242 cites W1994355817 @default.
- W2149183242 cites W1995956937 @default.
- W2149183242 cites W2005573147 @default.
- W2149183242 cites W2008232841 @default.
- W2149183242 cites W2009777721 @default.
- W2149183242 cites W2015399216 @default.
- W2149183242 cites W2026942392 @default.
- W2149183242 cites W2029679948 @default.
- W2149183242 cites W2044555821 @default.
- W2149183242 cites W2046937232 @default.
- W2149183242 cites W2066472236 @default.
- W2149183242 cites W2078881852 @default.
- W2149183242 cites W2131966329 @default.
- W2149183242 cites W2134347711 @default.
- W2149183242 cites W3133545613 @default.
- W2149183242 doi "https://doi.org/10.1016/s0045-7825(02)00287-6" @default.
- W2149183242 hasPublicationYear "2002" @default.
- W2149183242 type Work @default.
- W2149183242 sameAs 2149183242 @default.
- W2149183242 citedByCount "418" @default.
- W2149183242 countsByYear W21491832422012 @default.
- W2149183242 countsByYear W21491832422013 @default.
- W2149183242 countsByYear W21491832422014 @default.
- W2149183242 countsByYear W21491832422015 @default.
- W2149183242 countsByYear W21491832422016 @default.
- W2149183242 countsByYear W21491832422017 @default.
- W2149183242 countsByYear W21491832422018 @default.
- W2149183242 countsByYear W21491832422019 @default.
- W2149183242 countsByYear W21491832422020 @default.
- W2149183242 countsByYear W21491832422021 @default.
- W2149183242 countsByYear W21491832422022 @default.
- W2149183242 countsByYear W21491832422023 @default.
- W2149183242 crossrefType "journal-article" @default.
- W2149183242 hasAuthorship W2149183242A5010593826 @default.
- W2149183242 hasAuthorship W2149183242A5078374061 @default.
- W2149183242 hasConcept C105795698 @default.
- W2149183242 hasConcept C106131492 @default.
- W2149183242 hasConcept C11413529 @default.
- W2149183242 hasConcept C121332964 @default.
- W2149183242 hasConcept C126255220 @default.
- W2149183242 hasConcept C127413603 @default.
- W2149183242 hasConcept C140779682 @default.
- W2149183242 hasConcept C154945302 @default.
- W2149183242 hasConcept C163258240 @default.
- W2149183242 hasConcept C19499675 @default.
- W2149183242 hasConcept C200601418 @default.
- W2149183242 hasConcept C2987092418 @default.
- W2149183242 hasConcept C31972630 @default.
- W2149183242 hasConcept C33923547 @default.
- W2149183242 hasConcept C41008148 @default.
- W2149183242 hasConcept C43214815 @default.
- W2149183242 hasConcept C49937458 @default.
- W2149183242 hasConcept C50644808 @default.
- W2149183242 hasConcept C52740198 @default.
- W2149183242 hasConcept C62520636 @default.
- W2149183242 hasConceptScore W2149183242C105795698 @default.
- W2149183242 hasConceptScore W2149183242C106131492 @default.
- W2149183242 hasConceptScore W2149183242C11413529 @default.
- W2149183242 hasConceptScore W2149183242C121332964 @default.
- W2149183242 hasConceptScore W2149183242C126255220 @default.
- W2149183242 hasConceptScore W2149183242C127413603 @default.
- W2149183242 hasConceptScore W2149183242C140779682 @default.
- W2149183242 hasConceptScore W2149183242C154945302 @default.
- W2149183242 hasConceptScore W2149183242C163258240 @default.
- W2149183242 hasConceptScore W2149183242C19499675 @default.
- W2149183242 hasConceptScore W2149183242C200601418 @default.
- W2149183242 hasConceptScore W2149183242C2987092418 @default.
- W2149183242 hasConceptScore W2149183242C31972630 @default.
- W2149183242 hasConceptScore W2149183242C33923547 @default.
- W2149183242 hasConceptScore W2149183242C41008148 @default.
- W2149183242 hasConceptScore W2149183242C43214815 @default.
- W2149183242 hasConceptScore W2149183242C49937458 @default.
- W2149183242 hasConceptScore W2149183242C50644808 @default.
- W2149183242 hasConceptScore W2149183242C52740198 @default.
- W2149183242 hasConceptScore W2149183242C62520636 @default.
- W2149183242 hasIssue "32" @default.
- W2149183242 hasLocation W21491832421 @default.
- W2149183242 hasOpenAccess W2149183242 @default.
- W2149183242 hasPrimaryLocation W21491832421 @default.
- W2149183242 hasRelatedWork W2017089693 @default.
- W2149183242 hasRelatedWork W2018110001 @default.
- W2149183242 hasRelatedWork W2063508385 @default.
- W2149183242 hasRelatedWork W2066869163 @default.
- W2149183242 hasRelatedWork W2078770321 @default.
- W2149183242 hasRelatedWork W2136734035 @default.
- W2149183242 hasRelatedWork W2330004501 @default.
- W2149183242 hasRelatedWork W2391563856 @default.