Matches in SemOpenAlex for { <https://semopenalex.org/work/W2149231849> ?p ?o ?g. }
- W2149231849 abstract "Signal processing methods for the automatic transcription of music are developed in this thesis. Music transcription is here understood as the process of analyzing a music signal so as to write down the parameters of the sounds that occur in it. The applied notation can be the traditional musical notation or any symbolic representation which gives sufficient information for performing the piece using the available musical instruments. Recovering the musical notation automatically for a given acoustic signal allows musicians to reproduce and modify the original performance. Another principal application is structured audio coding: a MIDI-like representation is extremely compact yet retains the identifiability and characteristics of a piece of music to an important degree. The scope of this thesis is in the automatic transcription of the harmonic and melodic parts of real-world music signals. Detecting or labeling the sounds of percussive instruments (drums) is not attempted, although the presence of these is allowed in the target signals. Algorithms are proposed that address two distinct subproblems of music transcription. The main part of the thesis is dedicated to multiple fundamental frequency (F0) estimation, that is, estimation of the F0s of several concurrent musical sounds. The other subproblem addressed is musical meter estimation. This has to do with rhythmic aspects of music and refers to the estimation of the regular pattern of strong and weak beats in a piece of music. For multiple-F0 estimation, two different algorithms are proposed. Both methods are based on an iterative approach, where the F0 of the most prominent sound is estimated, the sound is cancelled from the mixture, and the process is repeated for the residual. The first method is derived in a pragmatic manner and is based on the acoustic properties of musical sound mixtures. For the estimation stage, an algorithm is proposed which utilizes the frequency relationships of simultaneous spectral components, without assuming ideal harmonicity. For the cancelling stage, a new processing principle, spectral smoothness, is proposed as an efficient new mechanism for separating the detected sounds from the mixture signal. The other method is derived from known properties of the human auditory system. More specifically, it is assumed that the peripheral parts of hearing can be modelled by a bank of bandpass filters, followed by half-wave rectification and compression of the subband signals. It is shown that this basic structure allows the combined use of time-domain periodicity and frequency-domain periodicity for F0 extraction. In the derived algorithm, the higher-order (unresolved) harmonic partials of a sound are processed collectively, without the need to detect or estimate individual partials. This has the consequence that the method works reasonably accurately for short analysis frames. Computational efficiency of the method is based on calculating a frequency-domain approximation of the summary autocorrelation function, a physiologically-motivated representation of sound. Both of the proposed multiple-F0 estimation methods operate within a single time frame and arrive at approximately the same error rates. However, the auditorily-motivated method is superior in short analysis frames. On the other hand, the pragmatically-oriented method is “complete” in the sense that it includes mechanisms for suppressing additive noise (drums) and for estimating the number of concurrent sounds in the analyzed signal. In musical interval and chord identification tasks, both algorithms outperformed the average of ten trained musicians." @default.
- W2149231849 created "2016-06-24" @default.
- W2149231849 creator A5035987859 @default.
- W2149231849 date "2004-01-01" @default.
- W2149231849 modified "2023-09-26" @default.
- W2149231849 title "Signal Processing Methods for the Automatic Transcription of Music" @default.
- W2149231849 cites W100644437 @default.
- W2149231849 cites W125234751 @default.
- W2149231849 cites W137121123 @default.
- W2149231849 cites W140394387 @default.
- W2149231849 cites W147159200 @default.
- W2149231849 cites W1493346876 @default.
- W2149231849 cites W1497544109 @default.
- W2149231849 cites W1504986446 @default.
- W2149231849 cites W1508603446 @default.
- W2149231849 cites W1516597666 @default.
- W2149231849 cites W1523373265 @default.
- W2149231849 cites W1530195630 @default.
- W2149231849 cites W153748520 @default.
- W2149231849 cites W1537504396 @default.
- W2149231849 cites W1539989226 @default.
- W2149231849 cites W1545680208 @default.
- W2149231849 cites W1546379016 @default.
- W2149231849 cites W1550027367 @default.
- W2149231849 cites W1551816323 @default.
- W2149231849 cites W1560013842 @default.
- W2149231849 cites W1561949603 @default.
- W2149231849 cites W1565658805 @default.
- W2149231849 cites W1567997379 @default.
- W2149231849 cites W1569542462 @default.
- W2149231849 cites W1571477232 @default.
- W2149231849 cites W1575829986 @default.
- W2149231849 cites W1590881209 @default.
- W2149231849 cites W1593386485 @default.
- W2149231849 cites W1596689267 @default.
- W2149231849 cites W1597011017 @default.
- W2149231849 cites W1601760457 @default.
- W2149231849 cites W1604263501 @default.
- W2149231849 cites W1605982637 @default.
- W2149231849 cites W161326699 @default.
- W2149231849 cites W1613529144 @default.
- W2149231849 cites W1623821838 @default.
- W2149231849 cites W1625636363 @default.
- W2149231849 cites W163764730 @default.
- W2149231849 cites W169074744 @default.
- W2149231849 cites W1724148608 @default.
- W2149231849 cites W1762078900 @default.
- W2149231849 cites W18350871 @default.
- W2149231849 cites W186036538 @default.
- W2149231849 cites W1863372652 @default.
- W2149231849 cites W1908335757 @default.
- W2149231849 cites W1958993123 @default.
- W2149231849 cites W1964538581 @default.
- W2149231849 cites W1964766006 @default.
- W2149231849 cites W1966364906 @default.
- W2149231849 cites W1966407170 @default.
- W2149231849 cites W1966948181 @default.
- W2149231849 cites W1970893633 @default.
- W2149231849 cites W1971146038 @default.
- W2149231849 cites W1974196562 @default.
- W2149231849 cites W197919343 @default.
- W2149231849 cites W1979628190 @default.
- W2149231849 cites W1980674027 @default.
- W2149231849 cites W1985014571 @default.
- W2149231849 cites W1990106150 @default.
- W2149231849 cites W1990689210 @default.
- W2149231849 cites W1999949665 @default.
- W2149231849 cites W2001030631 @default.
- W2149231849 cites W2001394185 @default.
- W2149231849 cites W2002525568 @default.
- W2149231849 cites W2003980054 @default.
- W2149231849 cites W2004125743 @default.
- W2149231849 cites W2005608041 @default.
- W2149231849 cites W2006386030 @default.
- W2149231849 cites W2008009725 @default.
- W2149231849 cites W2010362355 @default.
- W2149231849 cites W2016503548 @default.
- W2149231849 cites W2017258629 @default.
- W2149231849 cites W2023723978 @default.
- W2149231849 cites W2024595034 @default.
- W2149231849 cites W2026030136 @default.
- W2149231849 cites W2026502181 @default.
- W2149231849 cites W2027468870 @default.
- W2149231849 cites W2028078738 @default.
- W2149231849 cites W2032778507 @default.
- W2149231849 cites W2037447975 @default.
- W2149231849 cites W2042731730 @default.
- W2149231849 cites W2043694038 @default.
- W2149231849 cites W2043843997 @default.
- W2149231849 cites W2046059186 @default.
- W2149231849 cites W2046656536 @default.
- W2149231849 cites W2050758723 @default.
- W2149231849 cites W2059260101 @default.
- W2149231849 cites W2060223143 @default.
- W2149231849 cites W2062328787 @default.
- W2149231849 cites W2067063915 @default.
- W2149231849 cites W2067265757 @default.
- W2149231849 cites W2075586101 @default.
- W2149231849 cites W2076222003 @default.
- W2149231849 cites W2083145261 @default.