Matches in SemOpenAlex for { <https://semopenalex.org/work/W2149252196> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2149252196 endingPage "111" @default.
- W2149252196 startingPage "82" @default.
- W2149252196 abstract "Gaussian Process Regression (GPR) is a nonparametric technique that is capable of yielding reliable out‐of‐sample predictions in the presence of highly nonlinear unknown relationships between dependent and explanatory variables. But in terms of identifying relevant explanatory variables, this method is far less explicit about questions of statistical significance. In contrast, more traditional spatial econometric models, such as spatial autoregressive models or spatial error models, place rather strong prior restrictions on the functional form of relationships, but allow direct inference with respect to explanatory variables. In this article, we attempt to combine the best of both techniques by augmenting GPR with a Bayesian Model Averaging (BMA) component that allows for the identification of statistically relevant explanatory variables while retaining the predictive performance of GPR. In particular, GPR‐BMA yields a posterior probability interpretation of model‐inclusion frequencies that provides a natural measure of the statistical relevance of each variable. Moreover, while such frequencies offer no direct information about the signs of local marginal effects, it is shown that partial derivatives based on the mean GPR predictions do provide such information. We illustrate the additional insights made possible by this approach by applying GPR‐BMA to a benchmark BMA data set involving potential determinants of cross‐country economic growth. It is shown that localized marginal effects based on partial derivatives of mean GPR predictions yield additional insights into comparative growth effects across countries." @default.
- W2149252196 created "2016-06-24" @default.
- W2149252196 creator A5021629979 @default.
- W2149252196 creator A5027932867 @default.
- W2149252196 date "2015-08-21" @default.
- W2149252196 modified "2023-10-04" @default.
- W2149252196 title "Gaussian Process Regression and Bayesian Model Averaging: An Alternative Approach to Modeling Spatial Phenomena" @default.
- W2149252196 cites W1567512734 @default.
- W2149252196 cites W1599057079 @default.
- W2149252196 cites W1794957547 @default.
- W2149252196 cites W1993913957 @default.
- W2149252196 cites W2007069447 @default.
- W2149252196 cites W2014085179 @default.
- W2149252196 cites W2018891608 @default.
- W2149252196 cites W2025207305 @default.
- W2149252196 cites W2033199053 @default.
- W2149252196 cites W2037996624 @default.
- W2149252196 cites W2047120335 @default.
- W2149252196 cites W2057331441 @default.
- W2149252196 cites W2059448777 @default.
- W2149252196 cites W2106706098 @default.
- W2149252196 cites W2112540819 @default.
- W2149252196 cites W2120823309 @default.
- W2149252196 cites W2135728169 @default.
- W2149252196 cites W2136224105 @default.
- W2149252196 cites W2139701068 @default.
- W2149252196 cites W2149252196 @default.
- W2149252196 cites W2152933101 @default.
- W2149252196 cites W2257327159 @default.
- W2149252196 cites W2912689790 @default.
- W2149252196 cites W3122144636 @default.
- W2149252196 cites W3125981003 @default.
- W2149252196 cites W4240848086 @default.
- W2149252196 cites W4241750010 @default.
- W2149252196 cites W4243455742 @default.
- W2149252196 cites W4301651410 @default.
- W2149252196 doi "https://doi.org/10.1111/gean.12083" @default.
- W2149252196 hasPublicationYear "2015" @default.
- W2149252196 type Work @default.
- W2149252196 sameAs 2149252196 @default.
- W2149252196 citedByCount "18" @default.
- W2149252196 countsByYear W21492521962015 @default.
- W2149252196 countsByYear W21492521962016 @default.
- W2149252196 countsByYear W21492521962017 @default.
- W2149252196 countsByYear W21492521962018 @default.
- W2149252196 countsByYear W21492521962019 @default.
- W2149252196 countsByYear W21492521962020 @default.
- W2149252196 countsByYear W21492521962021 @default.
- W2149252196 countsByYear W21492521962023 @default.
- W2149252196 crossrefType "journal-article" @default.
- W2149252196 hasAuthorship W2149252196A5021629979 @default.
- W2149252196 hasAuthorship W2149252196A5027932867 @default.
- W2149252196 hasConcept C105795698 @default.
- W2149252196 hasConcept C107673813 @default.
- W2149252196 hasConcept C149782125 @default.
- W2149252196 hasConcept C154945302 @default.
- W2149252196 hasConcept C159877910 @default.
- W2149252196 hasConcept C160234255 @default.
- W2149252196 hasConcept C2776502983 @default.
- W2149252196 hasConcept C33923547 @default.
- W2149252196 hasConcept C41008148 @default.
- W2149252196 hasConcept C554190296 @default.
- W2149252196 hasConcept C71813955 @default.
- W2149252196 hasConcept C76155785 @default.
- W2149252196 hasConceptScore W2149252196C105795698 @default.
- W2149252196 hasConceptScore W2149252196C107673813 @default.
- W2149252196 hasConceptScore W2149252196C149782125 @default.
- W2149252196 hasConceptScore W2149252196C154945302 @default.
- W2149252196 hasConceptScore W2149252196C159877910 @default.
- W2149252196 hasConceptScore W2149252196C160234255 @default.
- W2149252196 hasConceptScore W2149252196C2776502983 @default.
- W2149252196 hasConceptScore W2149252196C33923547 @default.
- W2149252196 hasConceptScore W2149252196C41008148 @default.
- W2149252196 hasConceptScore W2149252196C554190296 @default.
- W2149252196 hasConceptScore W2149252196C71813955 @default.
- W2149252196 hasConceptScore W2149252196C76155785 @default.
- W2149252196 hasIssue "1" @default.
- W2149252196 hasLocation W21492521961 @default.
- W2149252196 hasOpenAccess W2149252196 @default.
- W2149252196 hasPrimaryLocation W21492521961 @default.
- W2149252196 hasRelatedWork W2042380567 @default.
- W2149252196 hasRelatedWork W2077706297 @default.
- W2149252196 hasRelatedWork W2505726097 @default.
- W2149252196 hasRelatedWork W2570947565 @default.
- W2149252196 hasRelatedWork W2772689174 @default.
- W2149252196 hasRelatedWork W291424883 @default.
- W2149252196 hasRelatedWork W3121264095 @default.
- W2149252196 hasRelatedWork W3122157831 @default.
- W2149252196 hasRelatedWork W3166088155 @default.
- W2149252196 hasRelatedWork W4304809013 @default.
- W2149252196 hasVolume "48" @default.
- W2149252196 isParatext "false" @default.
- W2149252196 isRetracted "false" @default.
- W2149252196 magId "2149252196" @default.
- W2149252196 workType "article" @default.