Matches in SemOpenAlex for { <https://semopenalex.org/work/W2149276352> ?p ?o ?g. }
- W2149276352 abstract "Networked services like distributed file systems can suffer a wide range of problems such as machine crashes and security intrusions that may cause downtime, incorrect behavior, and other undesirable issues. Byzantine-fault-tolerant protocols that replicate the services represent catchall solutions for such problems by providing survivability—the ability of a service to operate correctly despite instances of such security or reliability These protocols use Byzantine quorum systems as building blocks in order to ensure that services operate correctly and are available to clients even in the presence of faults. However, there are a variety of Byzantine quorum systems, which differ in three primary measures: fault tolerance—a measure of the number of faults that can be tolerated; load—a measure of efficiency; and availability—a measure of how well the service remains available for use. Unfortunately, no quorum system excels in all categories. In this dissertation, we show that, compared with previous quorum systems, probabilistic quorum systems can provide better fault tolerance and load albeit at the cost of admitting a bounded probability of failing to mask faults. We present a probabilistic opaque quorum system that can tolerate up to 37% more faults than can traditional opaque quorum systems. Then, we present a technique called write markers for probabilistic masking and opaque quorum systems that can tolerate 50% and 48% more faults, respectively, compared with traditional quorum systems. Moreover, these probabilistic quorum systems with write markers have asymptotically better load than the bounds proven for previous masking and opaque quorum systems, achieving an optimal O(1/ n ) in certain cases, and presenting the possibility of smaller quorums that yield efficient access for clients. Additional contributions of this dissertation include the following. First, we present a framework for comparing Byzantine-fault-tolerant protocols on the basis of how they use quorum systems. This framework highlights the similarity between protocols that are explicitly quorum based, such as Q/U, and others like BFT and Zyzzyva that are not. Second, we introduce a way of improving the availability of probabilistic quorum systems by providing some leeway in how quorums are chosen. Instead of assuming that all quorums are chosen uniformly at random, we allow faulty clients to choose quorums by any strategy from access sets that are chosen uniformly at random. Third, we present the first analysis of a probabilistic quorum system that accounts for the behavior of Byzantine-faulty clients. We anticipate that a faulty client may choose quorums with the goal of maximizing the error probability, and show the effects that this may have. Fourth, we present a framework based on the McDiarmid inequality in order to prove that probabilistic quorum systems in general can meet specific load and fault tolerance targets. This framework allows us to prove that probabilistic masking quorum systems can tolerate up to 13% more faults than shown using Chernoff bounds previously. Fifth, we present a protocol by which probabilistic quorum systems can tolerate Byzantine-faulty clients. Such clients are otherwise problematic in that they may seek to cause the system to fail to mask faults. Finally, we analyze the cost of changing quorums routinely, as may be required by probabilistic quorum systems. This analysis is in the context of wide area networks with the Q/U protocol, which can require state to be transferred between servers as a result of quorum changes." @default.
- W2149276352 created "2016-06-24" @default.
- W2149276352 creator A5027654945 @default.
- W2149276352 creator A5074117167 @default.
- W2149276352 date "2009-01-01" @default.
- W2149276352 modified "2023-09-27" @default.
- W2149276352 title "Efficient survivability for highly replicated services" @default.
- W2149276352 cites W118842186 @default.
- W2149276352 cites W1487382749 @default.
- W2149276352 cites W1491349109 @default.
- W2149276352 cites W1505678522 @default.
- W2149276352 cites W1515118891 @default.
- W2149276352 cites W1537362672 @default.
- W2149276352 cites W1553435762 @default.
- W2149276352 cites W1568279401 @default.
- W2149276352 cites W1595668546 @default.
- W2149276352 cites W1597159947 @default.
- W2149276352 cites W1599446772 @default.
- W2149276352 cites W1600328410 @default.
- W2149276352 cites W1650675509 @default.
- W2149276352 cites W174706587 @default.
- W2149276352 cites W1798131086 @default.
- W2149276352 cites W1973225261 @default.
- W2149276352 cites W1976188138 @default.
- W2149276352 cites W1984697505 @default.
- W2149276352 cites W1998787276 @default.
- W2149276352 cites W2002818065 @default.
- W2149276352 cites W2027340116 @default.
- W2149276352 cites W2038562061 @default.
- W2149276352 cites W2049913483 @default.
- W2149276352 cites W2052267638 @default.
- W2149276352 cites W2053903896 @default.
- W2149276352 cites W2073126252 @default.
- W2149276352 cites W2074009459 @default.
- W2149276352 cites W2080288192 @default.
- W2149276352 cites W2093581714 @default.
- W2149276352 cites W2095767682 @default.
- W2149276352 cites W2097517365 @default.
- W2149276352 cites W2099323800 @default.
- W2149276352 cites W2100562765 @default.
- W2149276352 cites W2101939036 @default.
- W2149276352 cites W2104942083 @default.
- W2149276352 cites W2111117778 @default.
- W2149276352 cites W2113954151 @default.
- W2149276352 cites W2114398523 @default.
- W2149276352 cites W2114579022 @default.
- W2149276352 cites W2121133177 @default.
- W2149276352 cites W2121493467 @default.
- W2149276352 cites W2122142939 @default.
- W2149276352 cites W2125530623 @default.
- W2149276352 cites W2126789306 @default.
- W2149276352 cites W2127265211 @default.
- W2149276352 cites W2127351510 @default.
- W2149276352 cites W2129467152 @default.
- W2149276352 cites W2129936476 @default.
- W2149276352 cites W2131132597 @default.
- W2149276352 cites W2134011626 @default.
- W2149276352 cites W2134667299 @default.
- W2149276352 cites W2138547999 @default.
- W2149276352 cites W2139359217 @default.
- W2149276352 cites W2139975493 @default.
- W2149276352 cites W2141448506 @default.
- W2149276352 cites W2142009827 @default.
- W2149276352 cites W2147524598 @default.
- W2149276352 cites W2151657860 @default.
- W2149276352 cites W2152465173 @default.
- W2149276352 cites W2158049821 @default.
- W2149276352 cites W2161866267 @default.
- W2149276352 cites W2167338470 @default.
- W2149276352 cites W2167898414 @default.
- W2149276352 cites W2169321888 @default.
- W2149276352 cites W2170720175 @default.
- W2149276352 cites W2171337572 @default.
- W2149276352 cites W2171957559 @default.
- W2149276352 cites W2255499863 @default.
- W2149276352 cites W2899702797 @default.
- W2149276352 cites W3137092842 @default.
- W2149276352 cites W3151869053 @default.
- W2149276352 cites W2058322902 @default.
- W2149276352 cites W2723060054 @default.
- W2149276352 hasPublicationYear "2009" @default.
- W2149276352 type Work @default.
- W2149276352 sameAs 2149276352 @default.
- W2149276352 citedByCount "0" @default.
- W2149276352 crossrefType "journal-article" @default.
- W2149276352 hasAuthorship W2149276352A5027654945 @default.
- W2149276352 hasAuthorship W2149276352A5074117167 @default.
- W2149276352 hasConcept C120314980 @default.
- W2149276352 hasConcept C154945302 @default.
- W2149276352 hasConcept C168021876 @default.
- W2149276352 hasConcept C2781133158 @default.
- W2149276352 hasConcept C31258907 @default.
- W2149276352 hasConcept C41008148 @default.
- W2149276352 hasConcept C49937458 @default.
- W2149276352 hasConcept C63540848 @default.
- W2149276352 hasConceptScore W2149276352C120314980 @default.
- W2149276352 hasConceptScore W2149276352C154945302 @default.
- W2149276352 hasConceptScore W2149276352C168021876 @default.
- W2149276352 hasConceptScore W2149276352C2781133158 @default.
- W2149276352 hasConceptScore W2149276352C31258907 @default.