Matches in SemOpenAlex for { <https://semopenalex.org/work/W2149285229> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2149285229 abstract "Linear dynamical systems with many degrees of freedom with periodic coefficients also depending on constant parameters are considered. Stability of the trivial solution is studied with the use of the Floquet theory. First and second order derivatives of the Floquet matrix with respect to parameters are derived in terms of matriciants of the main and adjoint problems and derivatives of the systems matrix. This allows finding the derivatives of simple multipliers, responsible for the stability of the system, with respect to parameters and predicting their behavior with a change of parameters. It is shown how to use this information in gradient procedures for stabilization or destabilization of the system. As a numerical example, the system described by Carsson-Cambi equation is considered. Then, strong and weak interactions of multipliers on the complex plane are studied, and geometric interpretation of these interactions is given. As application of the developed theory the resonance domains for Hill's equation with damping are studied. It is shown that they represent halves of cones in the three-parameter space. Then, parametric resonance of a pendulum with damping and vibrating suspension point following arbitrary periodic law is considered, and the parametric resonance domains are found. Another important application of damped Hill's equation is connected with the study of stability of periodic motions in non-linear dynamical systems. it is shown how to find stable and unstable regimes for harmonically excited Duffing's equation. Then, linear vibrational systems with periodic coefficients depending on three independent parameters: frequency and amplitude of periodic excitation, and damping parameter are considered with the assumption that the last two quantities are small. Instability of the trivial solution of the system (parametric resonance) is studied. For arbitrary matrix of periodic excitation and positive definite damping matrix general expressions for domains of the main (simple) and combination resonances are derived. Two important specific cases of excitation matrix are studied: a symmetric matrix and a stationary matrix multiplied by a scalar periodic function. It is shown that in both cases the resonance domains is halves of cones ion the three-dimensional space with the boundary surface coefficients depending only on the eigenfrequencies, eigenmodes and system matrices. The obtained relations allow to analyze influence of growing eigenfrequencies and resonance number on resonance domains. Two mechanical problems are considered and solved: Bolotin's problem of dynamic stability of a beam loaded by periodic bending moments, and parametric resonance of a non-uniform column loaded by periodic longitudinal force. The lecture is a review of the recent results on parametric resonance obtained by the author with Frederick Solem, Pauli Pedersen (Denmark), and Alexei A. Mailybaev (Russia)." @default.
- W2149285229 created "2016-06-24" @default.
- W2149285229 creator A5069660658 @default.
- W2149285229 date "2004-05-06" @default.
- W2149285229 modified "2023-09-27" @default.
- W2149285229 title "Theory of parametric resonance: modern results" @default.
- W2149285229 cites W1569528922 @default.
- W2149285229 cites W1967598571 @default.
- W2149285229 cites W1990353179 @default.
- W2149285229 cites W2001392303 @default.
- W2149285229 cites W2029572531 @default.
- W2149285229 cites W2068410238 @default.
- W2149285229 cites W2120438416 @default.
- W2149285229 cites W2465921455 @default.
- W2149285229 cites W2614903048 @default.
- W2149285229 cites W972107173 @default.
- W2149285229 doi "https://doi.org/10.1109/phycon.2003.1237051" @default.
- W2149285229 hasPublicationYear "2004" @default.
- W2149285229 type Work @default.
- W2149285229 sameAs 2149285229 @default.
- W2149285229 citedByCount "3" @default.
- W2149285229 countsByYear W21492852292013 @default.
- W2149285229 countsByYear W21492852292014 @default.
- W2149285229 countsByYear W21492852292018 @default.
- W2149285229 crossrefType "proceedings-article" @default.
- W2149285229 hasAuthorship W2149285229A5069660658 @default.
- W2149285229 hasConcept C105795698 @default.
- W2149285229 hasConcept C110639684 @default.
- W2149285229 hasConcept C112972136 @default.
- W2149285229 hasConcept C117251300 @default.
- W2149285229 hasConcept C119857082 @default.
- W2149285229 hasConcept C121332964 @default.
- W2149285229 hasConcept C132323500 @default.
- W2149285229 hasConcept C134306372 @default.
- W2149285229 hasConcept C139210041 @default.
- W2149285229 hasConcept C158622935 @default.
- W2149285229 hasConcept C164466805 @default.
- W2149285229 hasConcept C179117685 @default.
- W2149285229 hasConcept C208081375 @default.
- W2149285229 hasConcept C33923547 @default.
- W2149285229 hasConcept C41008148 @default.
- W2149285229 hasConcept C55649039 @default.
- W2149285229 hasConcept C62520636 @default.
- W2149285229 hasConcept C6802819 @default.
- W2149285229 hasConcept C74650414 @default.
- W2149285229 hasConcept C79379906 @default.
- W2149285229 hasConceptScore W2149285229C105795698 @default.
- W2149285229 hasConceptScore W2149285229C110639684 @default.
- W2149285229 hasConceptScore W2149285229C112972136 @default.
- W2149285229 hasConceptScore W2149285229C117251300 @default.
- W2149285229 hasConceptScore W2149285229C119857082 @default.
- W2149285229 hasConceptScore W2149285229C121332964 @default.
- W2149285229 hasConceptScore W2149285229C132323500 @default.
- W2149285229 hasConceptScore W2149285229C134306372 @default.
- W2149285229 hasConceptScore W2149285229C139210041 @default.
- W2149285229 hasConceptScore W2149285229C158622935 @default.
- W2149285229 hasConceptScore W2149285229C164466805 @default.
- W2149285229 hasConceptScore W2149285229C179117685 @default.
- W2149285229 hasConceptScore W2149285229C208081375 @default.
- W2149285229 hasConceptScore W2149285229C33923547 @default.
- W2149285229 hasConceptScore W2149285229C41008148 @default.
- W2149285229 hasConceptScore W2149285229C55649039 @default.
- W2149285229 hasConceptScore W2149285229C62520636 @default.
- W2149285229 hasConceptScore W2149285229C6802819 @default.
- W2149285229 hasConceptScore W2149285229C74650414 @default.
- W2149285229 hasConceptScore W2149285229C79379906 @default.
- W2149285229 hasLocation W21492852291 @default.
- W2149285229 hasOpenAccess W2149285229 @default.
- W2149285229 hasPrimaryLocation W21492852291 @default.
- W2149285229 hasRelatedWork W118391865 @default.
- W2149285229 hasRelatedWork W123299666 @default.
- W2149285229 hasRelatedWork W1876785039 @default.
- W2149285229 hasRelatedWork W191715919 @default.
- W2149285229 hasRelatedWork W1987102047 @default.
- W2149285229 hasRelatedWork W1992542824 @default.
- W2149285229 hasRelatedWork W2001392303 @default.
- W2149285229 hasRelatedWork W2011266806 @default.
- W2149285229 hasRelatedWork W2038401647 @default.
- W2149285229 hasRelatedWork W2047159153 @default.
- W2149285229 hasRelatedWork W2050864992 @default.
- W2149285229 hasRelatedWork W2067199024 @default.
- W2149285229 hasRelatedWork W2070171102 @default.
- W2149285229 hasRelatedWork W2078013197 @default.
- W2149285229 hasRelatedWork W2078014088 @default.
- W2149285229 hasRelatedWork W2080785117 @default.
- W2149285229 hasRelatedWork W235063442 @default.
- W2149285229 hasRelatedWork W301611506 @default.
- W2149285229 hasRelatedWork W303997629 @default.
- W2149285229 hasRelatedWork W53183125 @default.
- W2149285229 isParatext "false" @default.
- W2149285229 isRetracted "false" @default.
- W2149285229 magId "2149285229" @default.
- W2149285229 workType "article" @default.