Matches in SemOpenAlex for { <https://semopenalex.org/work/W2149309523> ?p ?o ?g. }
- W2149309523 abstract "In this thesis we discuss the design and implementation of Digital Signal Processing (DSP) applications in a standard digital CMOS technology. The aim is to fulfill a throughput requirement with lowest possible power consumption. As a case study a frequency selective filter is implemented using a half-band FIR filter and a bireciprocal Lattice Wave Digital Filter (LWDF) in a 0.35 µm CMOS process.The thesis is presented in a top-down manner, following the steps in the topdown design methodology. This design methodology, which has been used for bit-serial maximally fast implementations of IIR filters in the past, is here extended and applied for digit-serial implementations of recursive and non-recursive algorithms. Transformations such as pipelining and unfolding for increasing the throughput is applied and compared from throughput and power consumption points of view. A measure of the level of the logic pipelining is developed, i.e., the Latency Model (LM), which is used as a tuning variable between throughput and power consumption. The excess speed gained by the transformations can later be traded for low power operation by lowering the supply voltage, i.e., architecture driven voltage scaling.In the FIR filter case, it is shown that for low power operation with a given throughput requirement, that algorithm unfolding without pipelining is preferable. Decreasing the power consumption with 40, and 50 percent compared to pipelining at the logic or algorithm level, respectively. The digit-size should be tuned with the throughput requirement, i.e., using a large digit-size for low throughput requirement and decrease the digit-size with increasing throughput.In the bireciprocal LWDF case, the LM order can be used as a tuning variable for a trade-off between low energy consumption and high throughput. In this case using LM 0, i.e., non-pipelined processing elements yields minimum energy consumption and LM 1, i.e., use of pipelined processing elements, yields maximum throughput. By introducing some pipelined processing elements in the non-pipelined filter design a fractional LM order is obtained. Using three adders between every pipeline register, i.e., LM 1/3, yields a near maximum throughput and a near minimum energy consumption. In all cases should the digit-size be equal to the number of fractional bits in the coefficient.At the arithmetic level, digit-serial adders is designed and implemented in a 0.35 µm CMOS process, showing that for the digit-sizes, , the Ripple-Carry Adders (RCA) are preferable over Carry-Look-Ahead adders (CLA) from a throughput point of view. It is also shown that fixed coefficient digitserial multipliers based on unfolding of serial/parallel multipliers can obtain the same throughput as the corresponding adder in the digit-size range D = 2...4.A complex multiplier based on distributed arithmetic is used as a test case, implemented in a 0.8 µm CMOS process for evaluation of different logic styles from robustness, area, speed, and power consumption points of view. The evaluated logic styles are, non-overlapping pseudo two-phase clocked C2MOS latches with pass-transistor logic, Precharged True Single Phase Clocked logic (PTSPC), and Differential Cascade Voltage Switch logic (DCVS) with Single Transistor Clocked (STC) latches. In addition we propose a non-precharged true single phase clocked differential logic style, which is suitable for implementation of robust, high speed, and low power arithmetic processing elements, denoted Differential NMOS logic (DN-logic). The comparison shows that the two-phase clocked logic style is the best choice from a power consumption point of view, when voltage scaling can not be applied and the throughput requirement is low. However, the DN-logic style is the best choice when the throughput requirements is high or when voltage scaling is used." @default.
- W2149309523 created "2016-06-24" @default.
- W2149309523 creator A5026841919 @default.
- W2149309523 date "2005-01-01" @default.
- W2149309523 modified "2023-09-23" @default.
- W2149309523 title "Implementation of Digit-Serial Filters" @default.
- W2149309523 cites W1479826596 @default.
- W2149309523 cites W1485311461 @default.
- W2149309523 cites W1488570564 @default.
- W2149309523 cites W1497502357 @default.
- W2149309523 cites W1498676940 @default.
- W2149309523 cites W1503759468 @default.
- W2149309523 cites W1514409940 @default.
- W2149309523 cites W1529449227 @default.
- W2149309523 cites W1539840016 @default.
- W2149309523 cites W1539883310 @default.
- W2149309523 cites W1587217691 @default.
- W2149309523 cites W1591740570 @default.
- W2149309523 cites W1599814980 @default.
- W2149309523 cites W1603283909 @default.
- W2149309523 cites W1604816148 @default.
- W2149309523 cites W1604826642 @default.
- W2149309523 cites W1638329847 @default.
- W2149309523 cites W1675009181 @default.
- W2149309523 cites W170690678 @default.
- W2149309523 cites W1745337458 @default.
- W2149309523 cites W1774267655 @default.
- W2149309523 cites W1876931340 @default.
- W2149309523 cites W1898933431 @default.
- W2149309523 cites W1903691557 @default.
- W2149309523 cites W1954342964 @default.
- W2149309523 cites W1963965124 @default.
- W2149309523 cites W1966319673 @default.
- W2149309523 cites W1972580129 @default.
- W2149309523 cites W1983849809 @default.
- W2149309523 cites W1993589577 @default.
- W2149309523 cites W1996811695 @default.
- W2149309523 cites W2012622851 @default.
- W2149309523 cites W2046641314 @default.
- W2149309523 cites W2048773562 @default.
- W2149309523 cites W2049454663 @default.
- W2149309523 cites W2052363354 @default.
- W2149309523 cites W2077881312 @default.
- W2149309523 cites W2093112233 @default.
- W2149309523 cites W2097414281 @default.
- W2149309523 cites W2104550169 @default.
- W2149309523 cites W210629649 @default.
- W2149309523 cites W2107314576 @default.
- W2149309523 cites W2107507466 @default.
- W2149309523 cites W2108967711 @default.
- W2149309523 cites W2111529101 @default.
- W2149309523 cites W2115749699 @default.
- W2149309523 cites W2115875158 @default.
- W2149309523 cites W2118072362 @default.
- W2149309523 cites W2121766039 @default.
- W2149309523 cites W2123008137 @default.
- W2149309523 cites W2123688656 @default.
- W2149309523 cites W2125348509 @default.
- W2149309523 cites W2125425752 @default.
- W2149309523 cites W2128122124 @default.
- W2149309523 cites W2128372449 @default.
- W2149309523 cites W2131256658 @default.
- W2149309523 cites W2131647018 @default.
- W2149309523 cites W2132324656 @default.
- W2149309523 cites W2136738334 @default.
- W2149309523 cites W2137616964 @default.
- W2149309523 cites W2138134203 @default.
- W2149309523 cites W2138136668 @default.
- W2149309523 cites W2138968074 @default.
- W2149309523 cites W2139146376 @default.
- W2149309523 cites W2140958423 @default.
- W2149309523 cites W2143462372 @default.
- W2149309523 cites W2144799791 @default.
- W2149309523 cites W2146178450 @default.
- W2149309523 cites W2146495984 @default.
- W2149309523 cites W2147686711 @default.
- W2149309523 cites W2147699841 @default.
- W2149309523 cites W2152605373 @default.
- W2149309523 cites W2153691819 @default.
- W2149309523 cites W2154786720 @default.
- W2149309523 cites W2154880369 @default.
- W2149309523 cites W2155199871 @default.
- W2149309523 cites W2156229431 @default.
- W2149309523 cites W2156566689 @default.
- W2149309523 cites W2156754286 @default.
- W2149309523 cites W2157024459 @default.
- W2149309523 cites W2157685184 @default.
- W2149309523 cites W2159995309 @default.
- W2149309523 cites W2160304012 @default.
- W2149309523 cites W2162211138 @default.
- W2149309523 cites W2168543008 @default.
- W2149309523 cites W2293599327 @default.
- W2149309523 cites W3010672433 @default.
- W2149309523 cites W3103339143 @default.
- W2149309523 cites W51202027 @default.
- W2149309523 cites W577769927 @default.
- W2149309523 cites W587888623 @default.
- W2149309523 cites W594232951 @default.
- W2149309523 cites W618932772 @default.
- W2149309523 cites W647079147 @default.