Matches in SemOpenAlex for { <https://semopenalex.org/work/W2149323686> ?p ?o ?g. }
- W2149323686 endingPage "1455" @default.
- W2149323686 startingPage "1446" @default.
- W2149323686 abstract "Hard-margin support vector machines (HM-SVMs) suffer from getting overfitting in the presence of noise. Soft-margin SVMs deal with this problem by introducing a regularization term and obtain a state-of-the-art performance. However, this disposal leads to a relatively high computational cost. In this paper, an alternative method, greedy stagewise algorithm for SVMs, named GS-SVMs, is presented to cope with the overfitting of HM-SVMs without employing the regularization term. The most attractive property of GS-SVMs is that its computational complexity in the worst case only scales quadratically with the size of training samples. Experiments on the large data sets with up to 400,000 training samples demonstrate that GS-SVMs can be faster than LIBSVM 2.83 without sacrificing the accuracy. Finally, we employ statistical learning theory to analyze the empirical results, which shows that the success of GS-SVMs lies in that its early stopping rule can act as an implicit regularization term." @default.
- W2149323686 created "2016-06-24" @default.
- W2149323686 creator A5050487837 @default.
- W2149323686 creator A5050630882 @default.
- W2149323686 creator A5085032007 @default.
- W2149323686 date "2008-08-01" @default.
- W2149323686 modified "2023-10-16" @default.
- W2149323686 title "Training Hard-Margin Support Vector Machines Using Greedy Stagewise Algorithm" @default.
- W2149323686 cites W1486089539 @default.
- W2149323686 cites W1505087841 @default.
- W2149323686 cites W1648445109 @default.
- W2149323686 cites W1678356000 @default.
- W2149323686 cites W1880827259 @default.
- W2149323686 cites W1986280275 @default.
- W2149323686 cites W2015627422 @default.
- W2149323686 cites W2024046085 @default.
- W2149323686 cites W2033351162 @default.
- W2149323686 cites W2036350498 @default.
- W2149323686 cites W2070534370 @default.
- W2149323686 cites W2074130315 @default.
- W2149323686 cites W2087347434 @default.
- W2149323686 cites W2095885101 @default.
- W2149323686 cites W2118286367 @default.
- W2149323686 cites W2122284941 @default.
- W2149323686 cites W2124351082 @default.
- W2149323686 cites W2129809168 @default.
- W2149323686 cites W2149298154 @default.
- W2149323686 cites W2151040995 @default.
- W2149323686 cites W2151693816 @default.
- W2149323686 cites W2155399784 @default.
- W2149323686 cites W2156512439 @default.
- W2149323686 cites W2156909104 @default.
- W2149323686 cites W2161920802 @default.
- W2149323686 cites W4239510810 @default.
- W2149323686 doi "https://doi.org/10.1109/tnn.2008.2000576" @default.
- W2149323686 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18701373" @default.
- W2149323686 hasPublicationYear "2008" @default.
- W2149323686 type Work @default.
- W2149323686 sameAs 2149323686 @default.
- W2149323686 citedByCount "14" @default.
- W2149323686 countsByYear W21493236862014 @default.
- W2149323686 countsByYear W21493236862018 @default.
- W2149323686 countsByYear W21493236862022 @default.
- W2149323686 countsByYear W21493236862023 @default.
- W2149323686 crossrefType "journal-article" @default.
- W2149323686 hasAuthorship W2149323686A5050487837 @default.
- W2149323686 hasAuthorship W2149323686A5050630882 @default.
- W2149323686 hasAuthorship W2149323686A5085032007 @default.
- W2149323686 hasBestOaLocation W21493236862 @default.
- W2149323686 hasConcept C11413529 @default.
- W2149323686 hasConcept C119857082 @default.
- W2149323686 hasConcept C121332964 @default.
- W2149323686 hasConcept C12267149 @default.
- W2149323686 hasConcept C126255220 @default.
- W2149323686 hasConcept C154507838 @default.
- W2149323686 hasConcept C154945302 @default.
- W2149323686 hasConcept C22019652 @default.
- W2149323686 hasConcept C2776135515 @default.
- W2149323686 hasConcept C2779915298 @default.
- W2149323686 hasConcept C33923547 @default.
- W2149323686 hasConcept C41008148 @default.
- W2149323686 hasConcept C50644808 @default.
- W2149323686 hasConcept C51823790 @default.
- W2149323686 hasConcept C5465570 @default.
- W2149323686 hasConcept C61797465 @default.
- W2149323686 hasConcept C62520636 @default.
- W2149323686 hasConcept C774472 @default.
- W2149323686 hasConceptScore W2149323686C11413529 @default.
- W2149323686 hasConceptScore W2149323686C119857082 @default.
- W2149323686 hasConceptScore W2149323686C121332964 @default.
- W2149323686 hasConceptScore W2149323686C12267149 @default.
- W2149323686 hasConceptScore W2149323686C126255220 @default.
- W2149323686 hasConceptScore W2149323686C154507838 @default.
- W2149323686 hasConceptScore W2149323686C154945302 @default.
- W2149323686 hasConceptScore W2149323686C22019652 @default.
- W2149323686 hasConceptScore W2149323686C2776135515 @default.
- W2149323686 hasConceptScore W2149323686C2779915298 @default.
- W2149323686 hasConceptScore W2149323686C33923547 @default.
- W2149323686 hasConceptScore W2149323686C41008148 @default.
- W2149323686 hasConceptScore W2149323686C50644808 @default.
- W2149323686 hasConceptScore W2149323686C51823790 @default.
- W2149323686 hasConceptScore W2149323686C5465570 @default.
- W2149323686 hasConceptScore W2149323686C61797465 @default.
- W2149323686 hasConceptScore W2149323686C62520636 @default.
- W2149323686 hasConceptScore W2149323686C774472 @default.
- W2149323686 hasIssue "8" @default.
- W2149323686 hasLocation W21493236861 @default.
- W2149323686 hasLocation W21493236862 @default.
- W2149323686 hasLocation W21493236863 @default.
- W2149323686 hasOpenAccess W2149323686 @default.
- W2149323686 hasPrimaryLocation W21493236861 @default.
- W2149323686 hasRelatedWork W125715603 @default.
- W2149323686 hasRelatedWork W1996541855 @default.
- W2149323686 hasRelatedWork W2131042369 @default.
- W2149323686 hasRelatedWork W2149323686 @default.
- W2149323686 hasRelatedWork W2227020508 @default.
- W2149323686 hasRelatedWork W2351269980 @default.
- W2149323686 hasRelatedWork W2369771815 @default.