Matches in SemOpenAlex for { <https://semopenalex.org/work/W2149366263> ?p ?o ?g. }
- W2149366263 endingPage "2146" @default.
- W2149366263 startingPage "2117" @default.
- W2149366263 abstract "The London dispersion forces, along with the Debye and Keesom forces, constitute the long-range van der Waals forces. London's and Hamaker's work on the point-to-point dispersion interaction and Lifshitz's development of the continuum theory of dispersion are the foundations of our understanding of dispersion forces. Dispersion forces are present for all materials and are intrinsically related to the optical properties and the underlying interband electronic structures of materials. The force law scaling constant of the dispersion force, known as the Hamaker constant, can be determined from spectral or parametric optical properties of materials, combined with knowledge of the configuration of the materials. With recent access to new experimental and ab initio tools for determination of optical properties of materials, dispersion force research has new opportunities for detailed studies. Opportunities include development of improved index approximations and parametric representations of the optical properties for estimation of Hamaker constants. Expanded databases of London dispersion spectra of materials will permit accurate estimation of both nonretarded and retarded dispersion forces in complex configurations. Development of solutions for generalized multilayer configurations of materials are needed for the treatment of more-complex problems, such as graded interfaces. Dispersion forces can play a critical role in materials applications. Typically, they are a component with other forces in a force balance, and it is this balance that dictates the resulting behavior. The ubiquitous nature of the London dispersion forces makes them a factor in a wide spectrum of problems; they have been in evidence since the pioneering work of Young and Laplace on wetting, contact angles, and surface energies. Additional applications include the interparticle forces that can be measured by direct techniques, such as atomic force microscopy. London dispersion forces are important in both adhesion and in sintering, where the detailed shape at the crack tip and at the sintering neck can be controlled by the dispersion forces. Dispersion forces have an important role in the properties of numerous ceramics that contain intergranular films, and here the opportunity exists for the development of an integrated understanding of intergranular films that encompasses dispersion forces, segregation, multilayer adsorption, and structure. The intrinsic length scale at which there is a transition from the continuum perspective (dispersion forces) to the atomistic perspective (encompassing interatomic bonds) is critical in many materials problems, and the relationship of dispersion forces and intergranular films may represent an important opportunity to probe this topic. The London dispersion force is retarded at large separations, where the transit time of the electromagnetic interaction must be considered explicitly. Novel phenomena, such as equilibrium surficial films and bimodal wetting/dewetting, can result in materials systems when the characteristic wavelengths of the interatomic bonds and the physical interlayer thicknesses lead to a change in the sign of the dispersion force. Use of these novel phenomena in future materials applications provides interesting opportunities in materials design." @default.
- W2149366263 created "2016-06-24" @default.
- W2149366263 creator A5085904418 @default.
- W2149366263 date "2004-12-20" @default.
- W2149366263 modified "2023-10-17" @default.
- W2149366263 title "Origins and Applications of London Dispersion Forces and Hamaker Constants in Ceramics" @default.
- W2149366263 cites W1015803626 @default.
- W2149366263 cites W106692365 @default.
- W2149366263 cites W1487069997 @default.
- W2149366263 cites W1489595566 @default.
- W2149366263 cites W149174721 @default.
- W2149366263 cites W1510184633 @default.
- W2149366263 cites W1674940339 @default.
- W2149366263 cites W1676421722 @default.
- W2149366263 cites W1953242004 @default.
- W2149366263 cites W1963887098 @default.
- W2149366263 cites W1965854952 @default.
- W2149366263 cites W1970172894 @default.
- W2149366263 cites W1971624687 @default.
- W2149366263 cites W1972011189 @default.
- W2149366263 cites W1972411327 @default.
- W2149366263 cites W1976844384 @default.
- W2149366263 cites W1978093119 @default.
- W2149366263 cites W1979998999 @default.
- W2149366263 cites W1980420426 @default.
- W2149366263 cites W1981477534 @default.
- W2149366263 cites W1983650784 @default.
- W2149366263 cites W1985937315 @default.
- W2149366263 cites W198752858 @default.
- W2149366263 cites W1987556818 @default.
- W2149366263 cites W1988372128 @default.
- W2149366263 cites W1990856555 @default.
- W2149366263 cites W1995603844 @default.
- W2149366263 cites W1996359143 @default.
- W2149366263 cites W1998673149 @default.
- W2149366263 cites W2004808471 @default.
- W2149366263 cites W2006172561 @default.
- W2149366263 cites W2007942332 @default.
- W2149366263 cites W2008919610 @default.
- W2149366263 cites W2010384392 @default.
- W2149366263 cites W2010957465 @default.
- W2149366263 cites W2011082354 @default.
- W2149366263 cites W2012112014 @default.
- W2149366263 cites W2013645523 @default.
- W2149366263 cites W2014384249 @default.
- W2149366263 cites W2014581311 @default.
- W2149366263 cites W2014895129 @default.
- W2149366263 cites W2015720489 @default.
- W2149366263 cites W2017408836 @default.
- W2149366263 cites W2018181242 @default.
- W2149366263 cites W2019872939 @default.
- W2149366263 cites W2021084187 @default.
- W2149366263 cites W2021124775 @default.
- W2149366263 cites W2024920512 @default.
- W2149366263 cites W2025427245 @default.
- W2149366263 cites W2025759763 @default.
- W2149366263 cites W2026312967 @default.
- W2149366263 cites W2026753923 @default.
- W2149366263 cites W2027156662 @default.
- W2149366263 cites W2028165478 @default.
- W2149366263 cites W2029036051 @default.
- W2149366263 cites W2031138903 @default.
- W2149366263 cites W2032372876 @default.
- W2149366263 cites W2033841089 @default.
- W2149366263 cites W2033897960 @default.
- W2149366263 cites W2033923136 @default.
- W2149366263 cites W2035685239 @default.
- W2149366263 cites W2036113997 @default.
- W2149366263 cites W2036570160 @default.
- W2149366263 cites W2042149480 @default.
- W2149366263 cites W2042174402 @default.
- W2149366263 cites W2043137730 @default.
- W2149366263 cites W2046528357 @default.
- W2149366263 cites W2048087440 @default.
- W2149366263 cites W2048861084 @default.
- W2149366263 cites W2049427598 @default.
- W2149366263 cites W2050039216 @default.
- W2149366263 cites W2053104099 @default.
- W2149366263 cites W2053416118 @default.
- W2149366263 cites W2056078919 @default.
- W2149366263 cites W2060862763 @default.
- W2149366263 cites W2063324480 @default.
- W2149366263 cites W2063765012 @default.
- W2149366263 cites W2064756274 @default.
- W2149366263 cites W2065078975 @default.
- W2149366263 cites W2065922001 @default.
- W2149366263 cites W2066294614 @default.
- W2149366263 cites W2067221810 @default.
- W2149366263 cites W2067424902 @default.
- W2149366263 cites W2068036936 @default.
- W2149366263 cites W2068114343 @default.
- W2149366263 cites W2069722026 @default.
- W2149366263 cites W2070020183 @default.
- W2149366263 cites W2070261776 @default.
- W2149366263 cites W2072604721 @default.
- W2149366263 cites W2074309365 @default.
- W2149366263 cites W2076076242 @default.
- W2149366263 cites W2077496411 @default.