Matches in SemOpenAlex for { <https://semopenalex.org/work/W2149374811> ?p ?o ?g. }
- W2149374811 endingPage "339" @default.
- W2149374811 startingPage "339" @default.
- W2149374811 abstract "An experimental and numerical study investigating the flow development and fully developed flows of an incompressible Newtonian fluid in a curved duct of square cross section with a curvature ratio of 15.1 is presented. Numerical simulations of flow development from a specified inlet profile were performed using a parabolized form of the steady three-dimensional Navier-Stokes equations. No symmetry conditions were imposed. In general there was good agreement between the numerical predictions of the developing axial velocity profiles and LDV measurements. In addition, for computational expediency, the two-dimensional solution structure was calculated by imposing fully developed conditions together with symmetry conditions along the horizontal duct centreline.Laser-Doppler measurements of axial velocity and flow visualization at Dean number Dn = 125, 137 and 150, revealed a steady and symmetric two-vortex flow at Dn = 125, and a steady and symmetric four-vortex flow at both Dn = 137 and 150 (Dn = Re/(R/a)½, where Re is the Reynolds number, R is the radius of curvature of the duct and a is the duct dimension). Axial velocity measurements showed that the four-vortex flow at Dn = 150 developed to the solution predicted by the two-dimensional numerical simulation. However, the four-vortex flow at Dn = 137 was still developing when the flow had reached the end of the 240° axial length of the duct. A numerical investigation for Dean numbers in the range of 50 to 175 revealed that at the limit point of the two-cell to four-cell transition the development length appeared to be infinite, and thereafter decreased for increasing Dean numbers. The behaviour of decreasing development length of the four-vortex flow with increasing Dean number has not been reported previously.Using a symmetrically positioned pin at θ = 5° to induce the four-cell flows, the two-dimensional solution structure for Dn [les ] 150 was experimentally observed for the first time. Experiments were consistent with the prediction by Winters (1987) that four-vortex flows are stable to symmetric perturbations, but unstable to asymmetric perturbations. Experimental and numerical investigations suggested that, when perturbed asymmetrically, the four-vortex flow might evolve to flows with sustained spatial oscillations farther downstream." @default.
- W2149374811 created "2016-06-24" @default.
- W2149374811 creator A5013758406 @default.
- W2149374811 creator A5020230197 @default.
- W2149374811 creator A5091310415 @default.
- W2149374811 date "1992-11-01" @default.
- W2149374811 modified "2023-09-26" @default.
- W2149374811 title "An experimental and numerical study of the Dean problem: flow development towards two-dimensional multiple solutions" @default.
- W2149374811 cites W1964310949 @default.
- W2149374811 cites W1965480316 @default.
- W2149374811 cites W1965907038 @default.
- W2149374811 cites W1972107516 @default.
- W2149374811 cites W1976895828 @default.
- W2149374811 cites W1978591226 @default.
- W2149374811 cites W1990921920 @default.
- W2149374811 cites W1992965748 @default.
- W2149374811 cites W1994984867 @default.
- W2149374811 cites W1996172673 @default.
- W2149374811 cites W2001480669 @default.
- W2149374811 cites W2006156467 @default.
- W2149374811 cites W2011039175 @default.
- W2149374811 cites W2012281986 @default.
- W2149374811 cites W2015231237 @default.
- W2149374811 cites W2017013327 @default.
- W2149374811 cites W2021835382 @default.
- W2149374811 cites W2021992136 @default.
- W2149374811 cites W2036304234 @default.
- W2149374811 cites W2038730320 @default.
- W2149374811 cites W2059563714 @default.
- W2149374811 cites W2061425220 @default.
- W2149374811 cites W2062007578 @default.
- W2149374811 cites W2073779805 @default.
- W2149374811 cites W2074268116 @default.
- W2149374811 cites W2076330606 @default.
- W2149374811 cites W2076709683 @default.
- W2149374811 cites W2076987422 @default.
- W2149374811 cites W2081630698 @default.
- W2149374811 cites W2086973775 @default.
- W2149374811 cites W2087900761 @default.
- W2149374811 cites W2089843786 @default.
- W2149374811 cites W2102077700 @default.
- W2149374811 cites W2107550794 @default.
- W2149374811 cites W2128413014 @default.
- W2149374811 cites W2132858135 @default.
- W2149374811 cites W2145687949 @default.
- W2149374811 cites W2156293436 @default.
- W2149374811 cites W2156414971 @default.
- W2149374811 cites W2170284267 @default.
- W2149374811 doi "https://doi.org/10.1017/s0022112092003100" @default.
- W2149374811 hasPublicationYear "1992" @default.
- W2149374811 type Work @default.
- W2149374811 sameAs 2149374811 @default.
- W2149374811 citedByCount "112" @default.
- W2149374811 countsByYear W21493748112012 @default.
- W2149374811 countsByYear W21493748112013 @default.
- W2149374811 countsByYear W21493748112014 @default.
- W2149374811 countsByYear W21493748112015 @default.
- W2149374811 countsByYear W21493748112016 @default.
- W2149374811 countsByYear W21493748112017 @default.
- W2149374811 countsByYear W21493748112018 @default.
- W2149374811 countsByYear W21493748112019 @default.
- W2149374811 countsByYear W21493748112020 @default.
- W2149374811 countsByYear W21493748112021 @default.
- W2149374811 countsByYear W21493748112022 @default.
- W2149374811 countsByYear W21493748112023 @default.
- W2149374811 crossrefType "journal-article" @default.
- W2149374811 hasAuthorship W2149374811A5013758406 @default.
- W2149374811 hasAuthorship W2149374811A5020230197 @default.
- W2149374811 hasAuthorship W2149374811A5091310415 @default.
- W2149374811 hasConcept C121332964 @default.
- W2149374811 hasConcept C131097465 @default.
- W2149374811 hasConcept C140820882 @default.
- W2149374811 hasConcept C142724271 @default.
- W2149374811 hasConcept C180788929 @default.
- W2149374811 hasConcept C182748727 @default.
- W2149374811 hasConcept C195065555 @default.
- W2149374811 hasConcept C196558001 @default.
- W2149374811 hasConcept C2524010 @default.
- W2149374811 hasConcept C2778384633 @default.
- W2149374811 hasConcept C2781212128 @default.
- W2149374811 hasConcept C294558 @default.
- W2149374811 hasConcept C33923547 @default.
- W2149374811 hasConcept C38349280 @default.
- W2149374811 hasConcept C45502583 @default.
- W2149374811 hasConcept C57879066 @default.
- W2149374811 hasConcept C71924100 @default.
- W2149374811 hasConcept C74650414 @default.
- W2149374811 hasConcept C83893533 @default.
- W2149374811 hasConcept C97355855 @default.
- W2149374811 hasConceptScore W2149374811C121332964 @default.
- W2149374811 hasConceptScore W2149374811C131097465 @default.
- W2149374811 hasConceptScore W2149374811C140820882 @default.
- W2149374811 hasConceptScore W2149374811C142724271 @default.
- W2149374811 hasConceptScore W2149374811C180788929 @default.
- W2149374811 hasConceptScore W2149374811C182748727 @default.
- W2149374811 hasConceptScore W2149374811C195065555 @default.
- W2149374811 hasConceptScore W2149374811C196558001 @default.
- W2149374811 hasConceptScore W2149374811C2524010 @default.