Matches in SemOpenAlex for { <https://semopenalex.org/work/W2149393227> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2149393227 endingPage "253" @default.
- W2149393227 startingPage "243" @default.
- W2149393227 abstract "Chaos refers to the paradoxical evolution of a deterministic system in a way that is disordered—to the point that the time dependence of the physical variables appears stochastic. A need for data analysis procedures to detect, model, and separate chaotic and random processes has arisen from this recently understood paradigm. Many special techniques have been designed for chaotic data; the unification of these with conventional time series analysis is a developing field. This tutorial uses examples to explain the origin of chaotic behavior and the relation of chaos to randomness. Two powerful mathematical results are described: (1) a representation theorem guarantees the existence of a specific time-domain model for chaos and addresses the relation between chaotic, random, and strictly deterministic processes, and (2) a theorem assures that information on the behavior of a physical system in its complete state space can be extracted from time-series data on a single observable. These theorems form the basis of a practical data analysis scheme, as follows: given N observations of a variable Y, i.e., {Yn, n = 1,2,3, …, N}, define X = A * Y and maximize, with respect to the parameters of A, a function H(X) that measures degree of chaos. This maximization is carried out by minimizing the dimension covered by the data in the M-dimensional space (Xn, Xn+1, Xn+2, …, Xn+M−1). The resulting dimension D either (1) increases continuously with M or (2) levels off and remains constant (= Dmax) beyond a certain point. In case (1) or if Dmax is quite large X is random; if case (2) holds and Dmax is small, we have chaos. The inverse of A found in this procedure is an estimate of the filter in the moving average model for Y." @default.
- W2149393227 created "2016-06-24" @default.
- W2149393227 creator A5049856863 @default.
- W2149393227 date "1989-01-01" @default.
- W2149393227 modified "2023-09-23" @default.
- W2149393227 title "An introduction to chaotic and random time series analysis" @default.
- W2149393227 cites W1496798092 @default.
- W2149393227 cites W1675992076 @default.
- W2149393227 cites W1984391316 @default.
- W2149393227 cites W1998727969 @default.
- W2149393227 cites W2010187498 @default.
- W2149393227 cites W2020005691 @default.
- W2149393227 cites W2034099719 @default.
- W2149393227 cites W2040704490 @default.
- W2149393227 cites W2045184052 @default.
- W2149393227 cites W2048756246 @default.
- W2149393227 cites W2056651346 @default.
- W2149393227 cites W2058674283 @default.
- W2149393227 cites W2073630396 @default.
- W2149393227 cites W2085188728 @default.
- W2149393227 cites W2102892532 @default.
- W2149393227 cites W4233497874 @default.
- W2149393227 doi "https://doi.org/10.1002/ima.1850010213" @default.
- W2149393227 hasPublicationYear "1989" @default.
- W2149393227 type Work @default.
- W2149393227 sameAs 2149393227 @default.
- W2149393227 citedByCount "16" @default.
- W2149393227 countsByYear W21493932272016 @default.
- W2149393227 countsByYear W21493932272019 @default.
- W2149393227 crossrefType "journal-article" @default.
- W2149393227 hasAuthorship W2149393227A5049856863 @default.
- W2149393227 hasConcept C105795698 @default.
- W2149393227 hasConcept C116930293 @default.
- W2149393227 hasConcept C121332964 @default.
- W2149393227 hasConcept C121864883 @default.
- W2149393227 hasConcept C125112378 @default.
- W2149393227 hasConcept C14036430 @default.
- W2149393227 hasConcept C143724316 @default.
- W2149393227 hasConcept C151730666 @default.
- W2149393227 hasConcept C154945302 @default.
- W2149393227 hasConcept C17744445 @default.
- W2149393227 hasConcept C199539241 @default.
- W2149393227 hasConcept C202444582 @default.
- W2149393227 hasConcept C2776359362 @default.
- W2149393227 hasConcept C2777052490 @default.
- W2149393227 hasConcept C28826006 @default.
- W2149393227 hasConcept C32848918 @default.
- W2149393227 hasConcept C33676613 @default.
- W2149393227 hasConcept C33923547 @default.
- W2149393227 hasConcept C41008148 @default.
- W2149393227 hasConcept C62520636 @default.
- W2149393227 hasConcept C78458016 @default.
- W2149393227 hasConcept C8272713 @default.
- W2149393227 hasConcept C86803240 @default.
- W2149393227 hasConcept C94625758 @default.
- W2149393227 hasConceptScore W2149393227C105795698 @default.
- W2149393227 hasConceptScore W2149393227C116930293 @default.
- W2149393227 hasConceptScore W2149393227C121332964 @default.
- W2149393227 hasConceptScore W2149393227C121864883 @default.
- W2149393227 hasConceptScore W2149393227C125112378 @default.
- W2149393227 hasConceptScore W2149393227C14036430 @default.
- W2149393227 hasConceptScore W2149393227C143724316 @default.
- W2149393227 hasConceptScore W2149393227C151730666 @default.
- W2149393227 hasConceptScore W2149393227C154945302 @default.
- W2149393227 hasConceptScore W2149393227C17744445 @default.
- W2149393227 hasConceptScore W2149393227C199539241 @default.
- W2149393227 hasConceptScore W2149393227C202444582 @default.
- W2149393227 hasConceptScore W2149393227C2776359362 @default.
- W2149393227 hasConceptScore W2149393227C2777052490 @default.
- W2149393227 hasConceptScore W2149393227C28826006 @default.
- W2149393227 hasConceptScore W2149393227C32848918 @default.
- W2149393227 hasConceptScore W2149393227C33676613 @default.
- W2149393227 hasConceptScore W2149393227C33923547 @default.
- W2149393227 hasConceptScore W2149393227C41008148 @default.
- W2149393227 hasConceptScore W2149393227C62520636 @default.
- W2149393227 hasConceptScore W2149393227C78458016 @default.
- W2149393227 hasConceptScore W2149393227C8272713 @default.
- W2149393227 hasConceptScore W2149393227C86803240 @default.
- W2149393227 hasConceptScore W2149393227C94625758 @default.
- W2149393227 hasIssue "2" @default.
- W2149393227 hasLocation W21493932271 @default.
- W2149393227 hasOpenAccess W2149393227 @default.
- W2149393227 hasPrimaryLocation W21493932271 @default.
- W2149393227 hasRelatedWork W1546948180 @default.
- W2149393227 hasRelatedWork W1581878131 @default.
- W2149393227 hasRelatedWork W1971161234 @default.
- W2149393227 hasRelatedWork W1976184536 @default.
- W2149393227 hasRelatedWork W2022304299 @default.
- W2149393227 hasRelatedWork W2029974562 @default.
- W2149393227 hasRelatedWork W2046514197 @default.
- W2149393227 hasRelatedWork W2390308713 @default.
- W2149393227 hasRelatedWork W3101139499 @default.
- W2149393227 hasRelatedWork W4252075090 @default.
- W2149393227 hasVolume "1" @default.
- W2149393227 isParatext "false" @default.
- W2149393227 isRetracted "false" @default.
- W2149393227 magId "2149393227" @default.
- W2149393227 workType "article" @default.